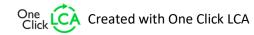


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930


EVOCAB SUPERHARD pipe

Evopipes SIA

EPD HUB, EPDHUB-0134

Publishing date 29 September 2022, last updated date 29 September 2022, valid until 29 September 2027

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Evopipes SIA
Address	Langervaldes street 2a, Jelgava, Latvia
Contact details	info@evopipes.lv
Website	www.evopipes.lv

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4 and D
EPD author	Inese Meldere, Alise Dude; Evopipes SIA
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	☐ Internal certification ☑ External verification
EPD verifier	E.A as an authorized verifier acting for EPD Hub

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	EVOCAB SUPERHARD pipe
Additional labels	EVOCAB SUPERHARD pipe
Product reference	All products from groups No.203 (product number starts with 203).
Place of production	Latvia
Period for data	2021
Averaging in EPD	No averaging

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg of pipe
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	2,09E0
GWP-total, A1-A3 (kgCO2e)	2,03E0
Secondary material, inputs (%)	4,65E-1
Secondary material, outputs (%)	0E0
Total energy use, A1-A3 (kWh)	8,21E0
Total water use, A1-A3 (m3e)	4,7E-3

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Evopipes is manufacturer of plastic pipe systems for electricity, telecom, water, wastewater and gas. Our production is based in Latvia, and we supply client's requests around the world.

Our main strategy is to design advanced pipeline products that increase work efficiency in the field of installing and exploiting pipe systems.

We are certified according to EN ISO 9001 Quality Management system, EN ISO 14001 Environmental Management system and EN ISO 50001 Energy Management system.

PRODUCT DESCRIPTION

EVOCAB SUPERHARD N 1250 reinforced double-wall cable protection pipes are designed for underground high-voltage cable lines. Corrugated outer wall ensures high compression strength properties and smooth inner surface of the pipe ensures easy pulling of cables. Due to their special structural properties, these cable protection pipes are lighter, but more rigid, as well as more impact-resistant than the conventional smooth-wall pipes.

SUPERHARD pipes provide long-term protection of high-voltage cables in high-load conditions, e.g. installations under traffic lanes, port and airport areas, as well as railway construction sites. High compression strength allows installation of the conduits at shallower depths, thereby shortening the installation time and optimising the costs.

EVOCAB SUPERHARD pipes are made in compliance with the requirements of following standards:

EN 61386-1:2018 Conduit systems for cable management – Part 1: General requirements (IEC 61386-1:2008)

EN 61386-24:2018 Conduit systems for cable management – Part 24: Particular requirements – Conduit systems buried underground (IEC 61386-24:2004)

PRODUCT	EVOCAB SUPERHARD
DN/OD, mm	110, 160, 200, 250, 315, 400
Strength N/20cm	1250
Impact resistance	Normal (N)
Temperature resistance, °C	from -40 to +90
Length, m	6
Material	Polypropylene (PP)
Colour	red, yellow, black

Further information can be found at www.evopipes.lv.

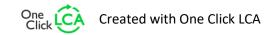
PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	0	-
Minerals	6,316	Spain
Fossil materials	93,684	Netherlands
Bio-based materials	0	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0.0003


FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of pipe
Mass per declared unit	1 kg

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

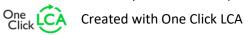
SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

	roduo			mbly	Use stage End of life s							fe sta	age	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	СЗ	C4		D	
х	х	х	х	х	MND	MND MND MND MND MND MND x x x x								х				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)


The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Manufacturing materials (A1)

The first module includes extraction and production of raw materials used in manufacturing process, mainly polypropylene granulate, as well as additives used in small amounts. Environmental impact for production of packaging materials and auxiliary materials are also included in this module.

Transport for manufacturing materials (A2)

Transport distances of materials to manufacturing site was modelled taking account location of suppliers and transportation routes. Raw materials are transported by lorry, by boat and by ferry. Packaging materials and auxiliary tools are transported by lorry on the road.

Manufacturing process (A3)

1.Raw Materials conveying / dosing / mixing

Polypropylene and additives as finished compounds are supplied (in either plastic bags or bulk form) and filled into silos and storage bins. From silos raw materials are carried to each pipe extruder through vacuum pressure transfer system, then dosed by volumetric or gravimetric weighing system and mixed to compose a running formulation.

2.Extrusion

The raw materials are melted at high temperature in the extruders and pushed through a die-head to form a sleeve-in-sleeve structure / future double-layer pipe.

3. Pipe profile corrugation

During the extrusion process the resultant polypropylene sleeve-in-sleeve structure is moved into the forming channel between the rotating mould blocks of the corrugator. The corrugated pipe profile is formed on a cooling mandrel by pressing the outer sleeve (layer) to the inner sleeve (layer) with vacuum acting through the slits of the mould blocks. Process of forming corrugated profile of the pipe is continuous / non-stop.

4. Cooling

Cooling of the corrugated pipes is done in a tank positioned after the corrugator, via water spraying nozzles. At the cooling stage there is stabilization of the product dimensions.

5. Printing

Ink-jet (or thermal ink-jet) printer marks the pipes at regular intervals with identification according to product name, size, strengths, class, and standard number.

6. Coiling / Cutting

The pipes are being cut in required length (usually 6m bars) and moved to socket application stage.

7. Socket application

Sockets, made from polypropylene, are fixated on the pipes by friction welding. Each welding is leak-tested and thus approved for packing.

8. Packaging

Packaging is made of wooden frames fixated with PET straps. The finished pipes are stored in holding area for inspection and quality acceptance.

9. Dispatch

After inspection and acceptance, the pipes are stored to await dispatch.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Transportation from factory to construction site (A4)

Transportation from EVOPIPES factory to construction site creates impact to the environment and is calculated in product LCA. Product is delivered by lorry and ferry with average distance 198 km, therefore emissions are caused by fuel. During transportation there is not product or packaging loss.

Construction process (A5)

Pipes are installed underground using excavator (diesel energy) and sand-gravel mix to strengthen the pipe in trench. Approximately 9% of product goes to landfilled waste after installation. Other waste occurs from packaging that goes to recycling/incineration. This scenario is based on TEPPFAs calculations.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

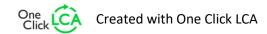
Deconstruction (C1)

End of Life stage for product occurs when pipe needs to be replaced. Since the consumption of energy and resources is negligible for disassembling of the end-of-life product, the impacts of demolition are assumed to be zero (this scenario is based on TEPPFAs calculations).

Transportation (C2)

5% of the end-of-life product assumed to be collected form demolition site and sent to landfill thus transportation emissions occur while product is transported to landfill place.

Recycling (C3)


Pipes are not recycled during end-of-life stage.

Disposal (C4)

For end-of-life calculation method is used landfilled scenario because it is the most representative. Based on TEPPFAs calculations assumed that in 95% of cases pipes are left in ground and in other 5% of time pipes are dig out and transported to nearest landfilling place.

Benefits and loads beyond system boundary (D)

To look at benefits outside system boundaries, recycled packaging material can be processed into granules, used as a secondary raw material, and incinerated product is being converted to energy.

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

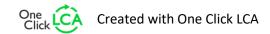
The study does not exclude any modules or processes that are defined as mandatory according to EN 15804A1:2012+A2:2019 and EPD HUB product category rules (PCR). The study does not exclude any hazardous materials or substances. In product life cycle calculations are included all materials and processes from acquisition of raw materials to product end-of-life stages. Only energy that is used for product de-construction at the end-of-life stage are cut-off due to negligible amount usage.

The modules B1-B7 have not been calculated or included in LCA calculations.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Allocated by mass or volume
Packaging materials	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume


In this EPD no averaging is used. EPD represents only one product- EVOCAB SUPERHARD.

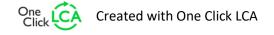
AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

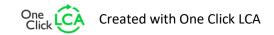

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP – total	kg CO₂e	1,89E0	2E-1	-5,43E-2	2,03E0	1,8E-2	9,32E0	MND	0E0	2,27E-4	0E0	1,27E-1	-4,69E-2						
GWP – fossil	kg CO₂e	1,88E0	1,99E-1	9,88E-3	2,09E0	1,82E-2	9,23E0	MND	0E0	2,27E-4	0E0	1,27E-1	-4,78E-2						
GWP – biogenic	kg CO₂e	7,59E-3	3,37E-5	-6,42E-2	-5,66E-2	1,23E-5	8,56E-2	MND	0E0	1,65E-7	0E0	1,14E-4	8,96E-4						
GWP – LULUC	kg CO₂e	4,88E-4	9,3E-5	2,75E-5	6,08E-4	5,78E-6	3,83E-3	MND	0E0	6,84E-8	0E0	5,58E-6	-6,35E-6						
Ozone depletion pot.	kg CFC-11e	3,24E-8	4,29E-8	1,72E-9	7,71E-8	4,24E-9	1,69E-6	MND	0E0	5,34E-11	0E0	3,28E-9	-5,44E-9						
Acidification potential	mol H⁺e	6,54E-3	4,1E-3	5,52E-5	1,07E-2	1,05E-4	7E-2	MND	0E0	9,54E-7	0E0	9,2E-5	-4,27E-4						
EP-freshwater ³⁾	kg Pe	2,79E-5	1,14E-6	5,69E-7	2,96E-5	1,44E-7	1,26E-4	MND	0E0	1,85E-9	0E0	1,96E-7	-1,31E-6						
EP-marine	kg Ne	1,09E-3	1,06E-3	1,42E-5	2,17E-3	2,99E-5	2,67E-2	MND	0E0	2,88E-7	0E0	5,24E-5	-5,43E-5						
EP-terrestrial	mol Ne	1,21E-2	1,18E-2	1,46E-4	2,4E-2	3,3E-4	2,96E-1	MND	0E0	3,18E-6	0E0	3,4E-4	-5,96E-4						
POCP ("smog")	kg NMVOCe	5,75E-3	3,12E-3	5,25E-5	8,92E-3	1E-4	8,33E-2	MND	0E0	1,02E-6	0E0	1,25E-4	-1,68E-4						
ADP-minerals & metals	kg Sbe	1,62E-5	2,08E-6	1,68E-7	1,85E-5	3E-7	1,65E-4	MND	0E0	3,88E-9	0E0	1,14E-7	-4,3E-8						
ADP-fossil resources	MJ	6,77E1	2,77E0	1,61E-1	7,06E1	2,8E-1	1,29E2	MND	0E0	3,53E-3	0E0	2,5E-1	-5,07E-1						
Water use ²⁾	m³e depr.	1,15E0	7,46E-3	3,21E-3	1,16E0	1,02E-3	3,44E1	MND	0E0	1,31E-5	0E0	1,11E-2	-2,57E-3						

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy	MJ	9,93E-1	2,49E-2	2,58E0	3,6E0	3,45E-3	3,11E0	MND	0E0	4,45E-5	0E0	4,38E-3	-8,4E-2						
Renew. PER as material	MJ	0E0	0E0	5,64E-1	5,64E-1	0E0	-5,64E-1	MND	0E0	0E0	0E0	0E0	0E0						
Total use of renew. PER	MJ	9,93E-1	2,49E-2	3,14E0	4,16E0	3,45E-3	2,55E0	MND	0E0	4,45E-5	0E0	4,38E-3	-8,4E-2						
Non-re. PER as energy	MJ	2,3E1	2,77E0	1,61E-1	2,59E1	2,8E-1	1,25E2	MND	0E0	3,53E-3	0E0	2,5E-1	-5,07E-1						
Non-re. PER as material	MJ	4,47E1	0E0	0E0	4,47E1	0E0	4E-3	MND	0E0	0E0	0E0	0E0	0E0						
Total use of non-re. PER	MJ	6,77E1	2,77E0	1,61E-1	7,06E1	2,8E-1	1,25E2	MND	0E0	3,53E-3	0E0	2,5E-1	-5,07E-1						
Secondary materials	kg	3,72E-3	0E0	9,27E-4	4,65E-3	0E0	3,56E-4	MND	0E0	0E0	0E0	0E0	0E0						
Renew. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Non-ren. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Use of net fresh water	m³	4,17E-3	3,92E-4	1,3E-4	4,7E-3	5,68E-5	7,93E-1	MND	0E0	7,36E-7	0E0	2,81E-4	-7,01E-5						

⁶⁾ PER = Primary energy resources



END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	4,05E-2	2,87E-3	1,56E-3	4,49E-2	2,74E-4	2,66E-1	MND	0E0	3,43E-6	0E0	4,54E-4	-2,33E-3						
Non-hazardous waste	kg	1,23E0	1,5E-1	2,4E-2	1,41E0	2,89E-2	9,01E0	MND	0E0	3,8E-4	0E0	1E0	-4,52E-2						
Radioactive waste	kg	2,83E-5	1,93E-5	8,48E-7	4,84E-5	1,92E-6	7,81E-4	MND	0E0	2,43E-8	0E0	1,49E-6	-2,45E-6						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Materials for recycling	kg	0E0	0E0	8,5E-4	8,5E-4	0E0	1,53E-3	MND	0E0	0E0	0E0	0E0	0E0						
Materials for energy rec	kg	0E0	0E0	0E0	0E0	0E0	4,36E-4	MND	0E0	0E0	0E0	0E0	0E0						
Exported energy	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,72E0	1,98E-1	9,76E-3	1,93E0	1,8E-2	9,11E0	MND	0E0	2,25E-4	0E0	8,98E-2	-4,69E-2						
Ozone depletion Pot.	kg CFC-11e	3,33E-8	3,4E-8	1,43E-9	6,87E-8	3,37E-9	1,35E-6	MND	0E0	4,25E-11	0E0	2,61E-9	-4,33E-9						
Acidification	kg SO₂e	5,52E-3	3,1E-3	4,02E-5	8,66E-3	6,09E-5	2E-2	MND	0E0	4,62E-7	0E0	9,03E-5	-3,71E-4						
Eutrophication	kg PO ₄ ³e	1,22E-3	3,64E-4	1,89E-5	1,6E-3	9,98E-6	5,35E-3	MND	0E0	9,34E-8	0E0	4,42E-3	-5,05E-5						
POCP ("smog")	kg C₂H₄e	3,59E-4	8,68E-5	3,63E-6	4,5E-4	2,88E-6	1,75E-3	MND	0E0	2,93E-8	0E0	1,88E-5	-1,47E-5						
ADP-elements	kg Sbe	1,62E-5	2,08E-6	1,68E-7	1,85E-5	3E-7	1,65E-4	MND	0E0	3,88E-9	0E0	1,14E-7	-4,3E-8						
ADP-fossil	MJ	6,77E1	2,77E0	1,61E-1	7,06E1	2,8E-1	1,29E2	MND	0E0	3,53E-3	0E0	2,5E-1	-5,07E-1						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

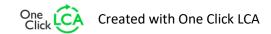
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Elma Avdyli as an authorized verifier acting for EPD Hub Limited 29.09.2022

VERIFIED ISO 14025

