# SIEMENS

## **Technical Instructions**

Document No. CA2N4713E-P25 Rev. 1, August, 2000

## MVL661.25

## HED Refrigerant Valve for Safety Refrigerants



| Description | Position-controlled magnetic valve for hot-gas expansion and throttling control.                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Features    | <ul> <li>One valve part number for hot-gas, expansion and suction gas applications.</li> <li>Hermetically sealed.</li> <li>Standard 0 to 10 Vdc or 4 to 20 mA interface.</li> <li>High resolution with precise positioning control and position feedback.</li> <li>Closed when de-energized.</li> <li>Sturdy and maintenance-free.</li> </ul>                                                                                          |  |  |
| Application | With its position-controlled magnetic actuator, the MVL661.25 HED refrigerant valve is designed for modulating capacity control of chillers and heat pumps. It is suitable for evaporator and suction pressure control but must not be used for safety shut-off functions (see <i>Leakage</i> under <i>Specifications</i> ).<br>The MVL661.25 can be used with organic safety refrigerants such as R22, R134a, R404A, R407C, and R507. |  |  |
| Function    | The MVL661.25 has a sturdy, maintenance-free valve body as a self-contained<br>hermetically-sealed unit. The valve has a high resolution and precise position control.<br>The electronic interface is designed for an 24 Vac operating voltage and a control<br>signal of 0 to 10 Vdc or 4 to 20 mA, and provides a 0 to 10 Vdc position feedback<br>signal. The valve is closed when de-energized.                                    |  |  |

#### **Product Numbers**

Table 1. Product Numbers and Operating Data.

| Product                                           | duct Line Cv Qo PN Pmed |     | Pmed   |                           | L (ft)         |                                   |                |           |
|---------------------------------------------------|-------------------------|-----|--------|---------------------------|----------------|-----------------------------------|----------------|-----------|
| Number                                            | Size<br>[in.]           |     | [Tons] | [VA]                      | [VA]           | 16<br>AWG                         | 14<br>AWG      | 12<br>AWG |
| MVL661.25                                         | 1                       | 2.4 | 70     | 16                        | 4              | 164                               | 279            | 443       |
| Key:<br>Cv = Flow rate tolerance ±10%             |                         |     | Qo =   | Nominal re<br>application | frigeration ca | pacity in expa                    | nsion          |           |
| PN = Nominal power<br>Pmed = Mean operating power |                         |     | L =    | Max.cable<br>and valve f  | length betwee  | en controller o<br>cross-sections | utput<br>shown |           |

#### Ordering

The MVL661.25 is supplied as a pre-assembled unit, comprising the valve body, magnetic actuator and terminal housing.

When ordering, specify the quantity, product number and product name.

Example: 1 MVL661.25 HED refrigerant valve

| Warning/Caution Not    | ations                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                |                                                                                                         |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
|                        | WARNING:                                                                                                                                                                                                                                                                                 |                                                       | Personal injury/loss of life may occ performed as specified.                                                                                                                                   | ur if a procedure is not                                                                                |  |
|                        | CAUTION:                                                                                                                                                                                                                                                                                 | Â                                                     | Equipment damage may occur if th procedure as specified.                                                                                                                                       | e user does not follow a                                                                                |  |
| Technical Design       | The actuator p<br>acting magnet                                                                                                                                                                                                                                                          | erforms m<br>. The mag                                | nodulating control based on the princ<br>inetic core is designed as a floating o                                                                                                               | tiple of a proportionally-                                                                              |  |
|                        | pressure system, eliminating the need for an external shaft gland. The valve is<br>hermetically sealed. The moving piston has built-in pressure compensation and a<br>return-spring, which is forced against the control disc when the valve is de-energized,<br>providing a tight seal. |                                                       |                                                                                                                                                                                                |                                                                                                         |  |
|                        | The valve holds a position between 0 and 100% stroke Stroke corresponding to the 0 to 10 Vdc control signal. The built-in positioning control feature acts quickly and accurately to correct deviations from the control signal.                                                         |                                                       |                                                                                                                                                                                                |                                                                                                         |  |
|                        | The valve position is measured inductively. The position feedback signal is available at the connection terminals as a 0 to 10 Vdc signal for other purposes (e.g., indication). The valve has extended female solder unions, making pipe connections easy.                              |                                                       |                                                                                                                                                                                                |                                                                                                         |  |
|                        |                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                                                                                                                | Control Signal                                                                                          |  |
| Sizing                 | The sizing of t                                                                                                                                                                                                                                                                          | he MVL66                                              | 1.25 valve depends on the refrigerar                                                                                                                                                           | nt, the evaporating and                                                                                 |  |
| Refrigeration Capacity | condensing pr<br>The amount of<br>C v -value, the<br>the valve is op                                                                                                                                                                                                                     | essures, a<br>f refrigerar<br>pressure<br>perating wi | and the application (hot-gas bypass, s<br>at flowing through the fully opened va<br>upstream [p <sub>1</sub> ] and downstream [p <sub>2</sub> ] of<br>th a super-critical or sub-critical pres | suction gas or expansion).<br>alve varies according to the<br>of the valve, and whether<br>ssure ratio. |  |
|                        | Pressure ratio                                                                                                                                                                                                                                                                           | : Super-cr                                            | itical 0.42 > $\frac{p_1}{p_1}$ > 0.42 Sub-critic                                                                                                                                              | cal                                                                                                     |  |
|                        | In expansion a<br>Calculations for                                                                                                                                                                                                                                                       | application<br>or gas-only                            | s, the effect of the proportion of fluid<br>/ or liquid-only valves are not possibl                                                                                                            | is a further factor.<br>le.                                                                             |  |
|                        |                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                                                                                                                |                                                                                                         |  |

| Application                                              | Pressure Ratio               | Refrigerant Quantity                                                                     |  |  |  |  |  |
|----------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| Suction gas,<br>hot gas (distributed to<br>2 condensers) | Sub-critical                 | $m = k_{vs} \times 0,143 \times \sqrt{\frac{\rho_N \times (p_1 - p_2) \times p_2}{T_1}}$ |  |  |  |  |  |
| Indirect hot gas<br>Direct hot gas                       | Super-critical <sup>1)</sup> | $m = k_{vs} \times 0,06 \times p_1 \times \sqrt{\frac{\rho_N}{T_1}}$                     |  |  |  |  |  |
| Expansion                                                | Super-critical <sup>1)</sup> | $m = k_{vs} \times f \times \sqrt{p_1 \times \rho}$                                      |  |  |  |  |  |

 Table 2. Refrigeration Calculation.

Key: m Quantity of refrigerant in kg/sec

- $\rho_N$  Standard density gas in kg/m<sup>3</sup> ( = Mol weight of refrigerant: 22.4)
- ρ Density of sub-cooled liquid in kg/dm<sup>3</sup>
- f Factor 0.14 to 0.18 (dependent on refrigerant, inlet pressure and valve geometry)
- T1 Temperature at valve inlet in Kelvin (e.g., 32°F (0°C)  $\rightarrow$  273K)
- p1 Absolute pressure at valve inlet [bar]
- p2 Absolute pressure at valve outlet [bar]
- Cv Volume of water in m<sup>3</sup>/h at a pressure differential of 1 bar
- 1) When the evaporating and condensing temperatures are close to one another, the pressure ratio is sub-critical.





The refrigeration capacity Qo is calculated by multiplying the volume of refrigerant per second by the special enthalpy differential from the log (p) – h chart for the refrigerant concerned. To help determine the refrigeration capacity more easily, a selection chart is provided for each application. With direct or indirect hot-gas bypass applications, the enthalpy differential of Qc (the condenser capacity) must also be taken into account when calculating the refrigeration capacity.

- All selection charts are based on superheating by 4K and sub-cooling by 2K.
- The pressure drop in the condenser/evaporator is based on 0.3 bar in each case.
- The pressure drop upstream of the evaporator (e.g., with distributor) is based on 0.3 bar.

If the evaporation and/or condensing temperatures are between the values shown in the table, the refrigeration capacity can be determined reasonably accurately by linear interpolation.

| Formula Symbols and Definitions, Continued | NOTES: 1. If the valve is used within the specified refrigerant and evaporating / condensing temperatures, the admissible differential pressure (Δpmax 25 bar) of the MVL661.25 will not be exceeded when the valve is used as an expansion valve or for direct or indirect hot-gas bypass applications.                                                                                                                                                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | 2. An increase of 1°F (1°C) in the evaporating temperature will produce an increase of approximately 0.5 to 1% in refrigeration capacity. In contrast, improving sub-cooling by 1°F (1°C) gives an increase of 1 to 2% in refrigeration capacity (this applies only down to sub-cooling by approximately 8K). Insufficient sub-cooling, resulting from too great a pressure drop upstream of the expansion valve, can lead to flash gas, and must be avoided. |
|                                            | 3. The differential pressure across the open valve is defined as $\Delta p_{v100}$ and across the closed valve as $\Delta p_{v0}$ . Note that $\Delta p_{v0}$ must not exceed the maximum differential pressure $\Delta p_{max}$ .                                                                                                                                                                                                                            |
| Correction factor k                        | Depending on the type of evaporator (direct expansion, shell-and-tube heat exchanger, plate heat exchanger, etc.) the additional pressure drop between the valve and evaporator must be taken into account. This is particularly relevant with condensing temperatures below 86°F (30°C) (e.g., in the transitional period from autumn to winter). Here, the actual refrigeration capacity will be lower than that shown in the selection charts.             |
|                                            | The correction factor k applies only to expansion and direct or indirect hot-gas                                                                                                                                                                                                                                                                                                                                                                              |

The correction factor k applies only to expansion and direct or indirect hot-gas applications, and depends on the evaporating temperature and the refrigerant used.



Figure 2. Correction Factor k Calculations.

Use Curve 3 if there is no information on the pressure drop between the valve and evaporator.

#### **Expansion Application**

#### Table 3. Expansion Refrigeration Capacity in Tons of Refrigeration.

|        | Refrigerant |                                |     |       |     |     |              |     |     |
|--------|-------------|--------------------------------|-----|-------|-----|-----|--------------|-----|-----|
|        | R4          | 407C (R2                       | 2)  | R134a |     |     | R404A / R507 |     |     |
| Е      |             | Condensing Temperature tc [°F] |     |       |     |     |              |     |     |
| t₀[°F] | 68          | 104                            | 140 | 68    | 104 | 140 | 68           | 104 | 140 |
| - 40   | 95          | 98                             | 85  | Ι     | Ι   | _   | 68           | 59  | _   |
| - 4    | 102         | 106                            | 96  | 73    | 78  | 74  | 75           | 68  | 44  |
| 14     | 105         | 111                            | 101 | 76    | 82  | 78  | 79           | 72  | 49  |
| 32     | 103         | 115                            | 106 | 69    | 86  | 83  | 79           | 76  | 53  |
| 50     | 66          | 119                            | 111 | 34.7  | 89  | 87  | 52           | 79  | 57  |

• The minimum refrigeration capacity of the system should not be less than 50% of the values shown in *Table 3*.

• It is important to use the correction factor k in conjunction with low loads (e.g., in autumn and winter).

#### Hot-gas Bypass Application

| Table 4. | Refrigeration Capacity in Tons of Refrigeration with Direct/Indirect |
|----------|----------------------------------------------------------------------|
|          | Hot-gas Bypass Applications.                                         |

|        | Refrigerant |                                |     |       |     |     |              |     |     |
|--------|-------------|--------------------------------|-----|-------|-----|-----|--------------|-----|-----|
|        | R           | 407C (R2                       | 2)  | R134a |     |     | R404A / R507 |     |     |
| FB     |             | Condensing Temperature tc [°F] |     |       |     |     |              |     |     |
| t∘[°F] | 68          | 104                            | 140 | 68    | 104 | 140 | 68           | 104 | 140 |
| - 40   | 14          | 23                             | 34  |       | Ι   | -   | 14           | 21  | Ι   |
| -4     | 14          | 22                             | 32  | 9     | 14  | 21  | 14           | 20  | 25  |
| 14     | 14          | 22                             | 32  | 9     | 14  | 21  | 14           | 20  | 25  |
| 32     | 14          | 22                             | 31  | 9     | 14  | 21  | 14           | 20  | 24  |
| 50     | 12          | 22                             | 31  | 7     | 14  | 20  | 12           | 20  | 24  |

• The minimum refrigeration capacity of the system should not be less than 65% of the values shown in *Table 4*.

• These values vary under low load conditions, depending on the type of evaporating and condensing pressure control. With low loads, if the evaporating and condensing pressure is not maintained constant, the evaporation pressure will rise and the condensation pressure will fall. The correction factor k must be included in calculations.

#### Suction Gas Application

# Table 5. Refrigeration Capacity in Tons of Refrigeration at a Condensing Temperature $t_{\rm c}$ of 104°F.

|        |     | Refrigerant                  |     |     |     |     |          |     |     |
|--------|-----|------------------------------|-----|-----|-----|-----|----------|-----|-----|
|        | R4  | R407C (R22) R134a            |     |     |     | R4  | 04A /R50 | )7  |     |
| S      |     | Pressure Differential ∆pv100 |     |     |     |     |          |     |     |
| t₀[°F] | 2.2 | 4.4                          | 7.3 | 2.2 | 4.4 | 7.3 | 2.2      | 4.4 | 7.3 |
| - 40   | 0.8 | 1.0                          | 1.0 | _   | _   | _   | 0.8      | 1.0 | 1.1 |
| - 4    | 1.5 | 2.1                          | 2.5 | 1.1 | 1.5 | 1.6 | 1.4      | 1.8 | 2.2 |
| 14     | 2.0 | 2.7                          | 3.3 | 1.5 | 2.0 | 2.4 | 1.7      | 2.4 | 3.0 |
| 32     | 2.4 | 3.4                          | 4.2 | 1.9 | 2.6 | 3.2 | 2.1      | 3.0 | 3.8 |
| 50     | 3.0 | 4.2                          | 5.3 | 2.4 | 3.2 | 4.0 | 2.6      | 3.7 | 4.7 |

**Engineering Notes** Depending on the application, additional installation instructions must be observed and the relevant safety elements (e.g., pressostats, full motor protection) must be installed.

**Expansion Application** 

The velocity of the refrigerant at the valve inlet in expansion valve applications must not exceed 3.3 feet per second. To achieve this, the pipe bore must be greater than one-inch diameter or, for copper pipes greater than one inch.



To achieve the best control, the refrigerant valve must be installed so that it is higher than the evaporator. Allow at least 1.5 feet of pipework between the expansion valve and the distributor.





#### CAUTION:

The direction of flow in the MVL661.25 refrigerant valve is NOT the same as in the M2FE...L... expansion valve.



For optimum compressor cooling, a capacity controller is required for the compressor. Alternatively, a bypass line must be installed across the refrigerant valve. The bypass dimensions should be such that at zero load, the minimum velocity of the gas in the suction line is greater than 2.3 feet per second.

#### Figure 4.

#### Mounting

Mounting instructions are enclosed with the refrigerant valve.

below the horizontal.

flow through the valve is correct.

pipes).

insulated.



Figure 5. Acceptable Mounting Positions.



• Remove the terminal housing and rotate the actuator so that the terminal base is facing away from the connection to be soldered.

The refrigerant valve may be mounted at any angle from upright to horizontal, but must not be suspended

Pipes should be fixed so that there is no pressure on the valve connections (vibration can lead to burst

The valve body and the pipes leading from it must be

Before soldering the pipes, check that the direction of

- Cool the valve body with a wet cloth while soldering.
- The pipes must be soldered with care. The flame should be large enough to ensure that the connection heats up quickly and that the valve itself does not become too hot. The flame should be directed away from the valve.

Figure 6.

### CAUTION:

- Disconnect the power before removing or replacing the signal transducer (terminal housing)
   Ensure that the ZM152 / ZM153 terminal housings are those supplied with the valve; the housings are NOT interchangeable.
- 2. The terminal housing is calibrated for the valve and must not be replaced.

| Specifications | Electrical interface:                    | With Class 2 only         |
|----------------|------------------------------------------|---------------------------|
| opeonioatione  | Operating voltage                        | 24 Vac +15/–10%           |
| Power Supply   | Frequency                                | 50/60 Hz                  |
| Input          | Control signal                           | 0 to 10 Vdc or 4 to 20 mA |
| •              | - Impedance (0 to 10 Vdc control signal) | 50K ohm                   |
|                | - Resistance (4 to 20 mA control signal) | 330K ohm                  |
| Output         | Position feedback signal                 | 0 to 10 Vdc               |
| •              | – Current                                | Maximum 2 mA load         |
|                |                                          |                           |

| Product Data            | Admissible pressure p <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 507 psi (35 bar)                                              |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|                         | Maximum differential pressure $\Delta p_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 365 psi (25 bar)                                              |  |  |  |
|                         | Leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum 0.001 $C_V$                                           |  |  |  |
|                         | Temperature of medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40 to 248°F (- 40 to 120°C)                                  |  |  |  |
|                         | Valve characteristic (stroke, k <sub>v</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Linear                                                        |  |  |  |
|                         | Type of operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Modulating                                                    |  |  |  |
|                         | Position when de-energized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Closed                                                        |  |  |  |
|                         | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | From upright to horizontal; do not suspend below horizontal   |  |  |  |
|                         | Positioning time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.5 second                                                   |  |  |  |
| Materials               | Housing components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Steel, copper, CrNi steel                                     |  |  |  |
|                         | Seat/inner valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CrNi steel/PTFE                                               |  |  |  |
|                         | Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extended female solder unions                                 |  |  |  |
| Electrical Connections  | Connection terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Screw terminals for max. 12 AWG wire                          |  |  |  |
| General Ambient         | Ambient temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4 to 122°F (- 20 to 50°C)                                    |  |  |  |
| Conditions              | Ambient atmosphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avoid use in saline atmosphere except with prior consultation |  |  |  |
| Dimensions and Weight   | Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See Dimensions                                                |  |  |  |
| -                       | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.5 lbs. (including packaging)                               |  |  |  |
| Agency Certification    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conforms to CE requirements.                                  |  |  |  |
| Connection<br>Terminals | G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G)<br>G(G) |                                                               |  |  |  |

#### Figure 7. Terminal Layout.



#### CAUTION:

The input voltage may be either 0 to 10 Vdc or 4 to 20 mA, but not simultaneously.

| Application<br>Examples             | The following examples illustrate the principles only. Installation-specific details (safety elements, refrigerant collectors, etc.) are not shown. |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Use as Expansion Valve for Capacity | Use as an electronic expansion valve:                                                                                                               |  |  |  |  |
| Optimization                        | Control range 50 to 100%                                                                                                                            |  |  |  |  |
|                                     | Increased capacity through better use of evaporator                                                                                                 |  |  |  |  |
|                                     | The use of two or more compressors or compressor stages significantly increases     efficiency with low loads                                       |  |  |  |  |
|                                     | Especially suitable for fluctuating condensing and evaporating pressures                                                                            |  |  |  |  |



Figure 9.

- 2. MVL661.25 refrigerant valve for capacity control of a chilled water unit.
  - Control range 0 to 100%
  - Economical low-load operation
  - Allows wide adjustment of condensing and evaporating temperatures
  - Ideal for plate heat exchangers
  - Highly reliable protection against freezing



 In the absence of electronic superheating control, a thermostatic expansion valve capable of adequate sub-cooling must be installed between the MVL661.25 valve and the evaporator.

l lg

| Example 2<br>tc<br>Pla<br>Re                                                           |                            | efrigerant R404A; Qo = 67.7 tons (238 kW); 2-stage; to = + 37°F (3°C);<br>c = 90°F (32°C)<br>late heat exchanger ( pressure drop 1 bar for even distribution of refrigerant)<br>efrigeration capacity of MVL661.25 (interpolated) => 75 tons (262 kW) |                                                                                                                                            |                                      |  |
|----------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Example 2a                                                                             | Metl<br>Full<br>stag       | hod of interpola<br>load as in Exan<br>le 1: to = + 37.4                                                                                                                                                                                              | d of interpolation:<br>ad as in Example 2. Low load Qo = 37.3 tons (131 kW);<br>1: to = + 37.4°F (3°C; tc = + 71.6°F (22°C).               |                                      |  |
| From Table E                                                                           | tc = 68°F<br>(20°C)        | tc = 104°F<br>(40°C)                                                                                                                                                                                                                                  | Interpolation at                                                                                                                           | tc = 71.6°F<br>(22°C)                |  |
| to = 50°F (10°C)                                                                       | 52.4 tons<br>(184 kW)      | 79.7 tons<br>(280 kW)                                                                                                                                                                                                                                 | (kW) 184 + (280 - 184) x (22 - 20) / (40 - 20)<br>(tons) 52.4 + &79.7 - 52.4) x (6.3 - 5.7) / (11.4 - 5.7)                                 | 193 kW<br>(55.3 tons)                |  |
| $to = 32^{\circ}F(0^{\circ}F)$                                                         | 79.1 tons<br>(278 kW)      | 76.0 tons<br>(267 kW)                                                                                                                                                                                                                                 | (kW) 278 + (267 – 278) x (22 – 20) / (40 – 20)<br>(tons) 79.1 + 76.0 – 79.1) x (6.3 – 5.7) / (11.4 – 5.7)                                  | 276 kW<br>(78.8 tons)                |  |
|                                                                                        |                            |                                                                                                                                                                                                                                                       | Interpolation At                                                                                                                           | to = + 3 °C                          |  |
| Correction factor ((                                                                   | Curve No. 2) k             | r = 0.89                                                                                                                                                                                                                                              | $276 + (193 - 276) \times (3 - 0) / (10 - 0)$<br>78.5 + (54.9 - 78.5) × (0.9 - 0) / (2.8 - 0)<br>0.89 + (1 - 0.89) × (22 - 20) / (30 - 20) | 251 kW<br>(70.9 tons)                |  |
| Correction factor at                                                                   | $t tc = 71.6^{\circ}F$ (2) | 22 °C)                                                                                                                                                                                                                                                | $0.89 + (1 - 0.89) \times (6.3 - 5.7) / (8.5 - 5.7)$<br>$0.91 \times 251 \text{ kW}$<br>$(0.91 \times 70.9 \text{ tons})$                  | (0.91 tons)<br>228 kW<br>(64.5 tons) |  |
| The MVL661.25 is suitable, since 131 kW (37.3 tons) / 228 kW (64.5 tons) x 100 % = 57% |                            |                                                                                                                                                                                                                                                       |                                                                                                                                            |                                      |  |

# Use in Hot-gas<br/>ApplicationThe control value throttles the capacity of a compressor state. The hot gas passes<br/>directly to the evaporator, allowing for capacity control ranging from 100% to<br/>approximately 0%.

#### **Indirect Hot-gas Bypass**



Suitable for use in large refrigeration systems in air conditioning applications to prevent unacceptable fluctuations in temperature between compressor stages.



Example 3

Refrigerant R507 ; 3-stage; Qo = 21.3 tons (75 kW); to = +  $39.2^{\circ}F$  (4 °C); tc = +  $104^{\circ}F$  (40°C) Low load, Qo per stage = 8.0 tons (28 kW); to = +  $39.2^{\circ}F$  (4°C); tc =  $73.4^{\circ}F$  (23°C) Pressure drop across DX evaporator and distributor: 29 psi (2 bar) Refrigeration capacity of MVL661.25 (interpolated) => 10.2 tons (36 kW)

#### Direct Hot-gasBypass

The control valve throttles the capacity of a compressor stage. The gas is fed to the suction side of the compressor and cooled using a re-injection valve. Capacity control range 100% to approximately 10%.



Suitable for large refrigeration systems in air conditioning applications with several compressors or compressor stages, and where the evaporator and compressor are some distance apart (attention must be paid to oil return).



| Evenne 4                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Example 4                                    | Refrigerant R407C; 3 compressors, Qo = 24.2 tons (85 kW); to = + 35.6°F (2°C);<br>tc = + 104°F (40°C)                                                                                                                                                                                                                                    |                                                                                                                                    |  |  |  |
|                                              | Low load, Qo per stage = 8.8 tons (31 kW), to = +35.6°F (2°C); tc = 73.4°F (23°C)                                                                                                                                                                                                                                                        |                                                                                                                                    |  |  |  |
|                                              | Pressure drop across plate heat exchanger: 1 bar                                                                                                                                                                                                                                                                                         |                                                                                                                                    |  |  |  |
|                                              | Retrigeration capacity of MVL661.25 (interpolated) => 13.1 tons (46 kW)                                                                                                                                                                                                                                                                  |                                                                                                                                    |  |  |  |
| Suction Gas<br>Application                   | Iction GasAs the control valve closes, the evaporating temperature rises. The air cooling of decreases continuously. The electronic control system provides demand-based without unwanted dehumidification and costly re-treatment of the air.                                                                                           |                                                                                                                                    |  |  |  |
|                                              | The pressure on the suction side of the compressor falls and the power consumption of the compressor is reduced. The anticipated energy savings with low loads can be determined from the compressor selection chart (power consumption at minimum admissible suction pressure). Compressor energy savings of up to 40% can be achieved. |                                                                                                                                    |  |  |  |
|                                              | v100 across the fully open valve                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |  |  |  |
| Suction Throttle Control<br>Range 50 to 100% |                                                                                                                                                                                                                                                                                                                                          | To maintain the cooling of the compressor,<br>a bypass line must be installed across the<br>refrigerant valve.                     |  |  |  |
|                                              | MVL661.25                                                                                                                                                                                                                                                                                                                                | With the MVL661.25 fully closed, the minimum velocity of the gas upstream of the compressor must be at least 2.3 ft/sec (0.7 m/s). |  |  |  |
|                                              | Figure 13.                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |  |  |  |
| Example 5                                    | Refrigerant R134a; Qo = 2.7 tons (9.5 kW); to = + 39.2°F (4°C); tc = + 140°F (40°C);<br>minimum refrigeration load 5 kW.                                                                                                                                                                                                                 |                                                                                                                                    |  |  |  |
|                                              | Differential pressure across MVL661.25 (interpolated) $\Delta p_{v100}$ , approx. 3.6 psi (25 kPa)                                                                                                                                                                                                                                       |                                                                                                                                    |  |  |  |

## Suction Throttle Control Range 10 to 100%



The compressor is sufficiently cooled by the capacity controller across the compressor, making a bypass line across the valve unnecessary.





W = Weight, including packaging

Figure 15. Dimensions in Inches (Millimeters).

Information in this publication is based on current specifications. The company reserves the right to make changes in specifications and models as design improvements are introduced. © 2000 Siemens Building Technologies, Inc.

Siemens Building Technologies, Inc. Landis & Staefa Division 1000 Deerfield Parkway Buffalo Grove, IL 60089-4513 U.S.A. Document No. CA2N4713E-P25 Printed in the U.S.A. Page 12