

TEST REPORT

Product Name:	LED Strip Light
Trademark:	IK TECHNIK
Model Number:	IK-FSL-005S IK-FSL-010S IK-FSL-015S IK- FSL-020S IK-FSL-025S IK-FSL-050S IK-FSL-005P IK-FSL-010P IK- FSL-015P IK-FSL-020P IK-FSL-025P IK-FSL-050P
Applicant's name:	
Address:	Floor 4, Building 4, Iongtai Times Center, Fu yong, Bao'an, Shenzhen, China 518103
Manufacturer:	SHEN ZHEN IK TECHNIK CO., LIMITED
Address:	Floor 4, Building 4, Tongtai Times Center, Fu yong, Bao'an, Shenzhen, China 518103
Prepared By:	Shenzhen Southern LCS Compliance Testing Laboratory Ltd.
Address:	Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China
Sample Received Date:	July. 21, 2020
Sample tested Date:	July. 21, 2020 to Sept. 15, 2020
Issue Date:	Sept. 16, 2020
Report No.:	LCS200526807EK
Test Standards	EN 55015:2013+A1:2015, EN 61547: 2009 EN 61000-3-2: 2014, EN 61000-3-3: 2013
Test Results	PASS

Compiled by:

Reviewed by:

Approved by:

Kris Mai

Dm Gu

Jessie Liu/Manager

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen Southern LCS Compliance Testing Laboratory Ltd., this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Ρ	a	зe
	ay	ィー

Tes	t Report Declaration F	Page
1.	VERSION	4
2.	TEST SUMMARY	5
3.	MEASUREMENT UNCERTAINTY	6
4.	PRODUCT INFORMATION AND TEST SETUP	7
4.	1 Product Information	7
4.	2 Test Setup Configuration	7
4.	3 Support Equipment	7
4.	4 Test Mode	8
5.	TEST FACILITY AND TEST INSTRUMENT USED	9
5.	1 Test Facility	9
5.	2 Test Instrument Used	9
6.	DISTURBANCE VOLTAGES	12
6.	1 Block Diagram Of Test Setup	12
6.	2 Limit	12
6.	3 Test procedure	12
6.	4 Test Result	13
7.	RADIATED DISTURBANCE (9KHZ-30MHZ)	15
7.	1 Block Diagram Of Test Setup	15
7.	2 Limits	15
7.	3 Test Procedure	15
7.	4 Test Results	16
8.	RADIATED DISTURBANCE (30MHZ -300MHZ)	19
8.	1 Block Diagram Of Test Setup	19
8.	2 Limits	19
8.	3 Test Procedure	19
8.		20
9.	HARMONIC CURRENT EMISSION(H)	22
9.	1 Block Diagram of Test Setup	22
9.	2 Limit	22
9.	3 Test Procedure	22
9.		25
10). VOLTAGE FLUCTUATIONS & FLICKER(F)	25
1(0.1 BIOCK Diagram of Test Setup	25
1().2 LITIIL	25
1() 4 Test Results	25
1.		2J
1		2/
14	2. ELECTRUSTATIC DISCHARGE (ESD)	28 مر
14	2 Block Diagram of Test Setun	۰۲۵ ۲۶
1:	2.3 Test Procedure	20
LCSTRI	F-S-001-A-2	20
Shenzh	en Southern LCS Compliance Testing Laboratory Ltd.	

12.4	Test Results	29
13. R/	ADIO FREQUENCY ELECTROMAGNETIC FIELDS(RS)	30
13.1	Test Specification	30
13.2	Block Diagram of Test Setup	30
13.3	Test Procedure	30
13.4	Test Results	30
14. F/	AST TRANSIENTS(EFT)	31
14.1	Test Specification	31
14.2	Block Diagram of EUT Test Setup	31
14.3	Test Procedure	31
14.4	Test Results	31
15. SI	URGES IMMUNITY TEST	32
15.1	Test Specification	32
15.2	Block Diagram of EUT Test Setup	32
15.3	Test Procedure	32
15.4	Test Result	33
16. IN	JECTED CURRENTS(CS)	34
16.1	Test Specification	34
16.2	Block Diagram of EUT Test Setup	34
16.3	Test Procedure	34
16.4	Test Result	34
17. VO	OLTAGE DIPS AND INTERRUPTIONS (DIPS)	35
17.1	Test Specification	35
17.2	Block Diagram of EUT Test Setup	35
17.3	Test Procedure	35
17.4	Test Result	35
18. El	JT PHOTOGRAPHS	36
19. El	UT TEST SETUP PHOTOGRAPHS	38

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
LCS200526807EK	Sept. 16, 2020	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

EMISSION					
Standard Test Item					
EN 55015	Disturbance voltages (CE)	Pass			
EN 55015	Radiated disturbance in frequency range 9KHz to 30MHz (ME)	Pass			
EN 55015	Radiated disturbance in frequency range 30MHz to 300MHz (RE)	Pass			
EN 61000-3-2	Harmonic current emission(H)	Pass			
EN 61000-3-3	Voltage fluctuations & flicker(F)	Pass			

IMMUNITY (EN 61547)				
Standard Test Item				
IEC 61000-4-2	Electrostatic discharge((ESD)	Pass		
IEC 61000-4-3	Radio frequency electromagnetic fields(RS)	Pass		
IEC 61000-4-4	Fast transients(EFT)	Pass		
IEC 61000-4-5	Surges	Pass		
IEC 61000-4-6	Injected currents(CS)	Pass		
IEC 61000-4-8	Power frequency magnetic fields(PFMF)	N/A ¹		
IEC 61000-4-11	Voltage dips and interruptions(DIPS)	Pass		

Remark:

1. The Product doesn't contain any device susceptible to magnetic fields.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Radiated Emission (30MHz-1000MHz)	4.80
Conducted Emission (150K-30MHZ)	3.20
Conducted Emission (9K-150KHZ)	3.10

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Ratings: AC230V/50Hz

Model difference:All models are id
ntical except for the appearance color,
the test model is IK-FSL-025P and the test results are
applicable to other tests.

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.						

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

Test item	Test Mode	Test Voltage
Disturbance voltages (CE)(9KHz-30MHz)	Working	AC 230V/50Hz
Radiated disturbance in frequency range 9KHz to 30MHz (ME)	Working	AC 230V/50Hz
Radiated disturbance in frequency range 30MHz to 300MHz (RE)	Working	AC 230V/50Hz
Harmonic current emission(H) Class <u>C</u>	Working	AC 230V/50Hz
Voltage fluctuations & flicker(F)	Working	AC 230V/50Hz
Electrostatic discharge (ESD) B Air Discharge: ±2,4,8kV Contact Discharge: ±2,4kV HCP & VCP: ±2,4kV	Working	AC 230V/50Hz
Radio frequency electromagnetic fields(RS) A 80MHz-1000MHz, 3V/m,80% Front, Rear, Left, Right H/V	Working	AC 230V/50Hz
Electrical fast transients/burst (EFT) B 1kV AC(Input) 0.5kV DC(Input) 0.5kV signal,Telec,control	Working	AC 230V/50Hz
Surges 0.5, 1kV Line-Line, C 0.5, 1, 2kV Line-PE, N-PE C Line-Line:90°+0.5&+1kV,270°-0.5&-11kV Line-PE, N-PE:90°+0.5,+1,+2kV,270°-0.5,-1,-2kV	Working	AC 230V/50Hz
Injected Currents (CS) A 0.15MHz to 80MHz 3V AC(Input) DC(Input) signal,control	Working	AC 230V/50Hz
Voltage dips and interruptions (DIPS) 0% 0.5P B 70%10P C	Working	AC 230V/50Hz
All test mode were tested and passed, disturbance, Harmonic Current Emissions an	only Disturbance v d Voltage Fluctuatio	voltages, ME, Radiated ons and Flicker shows (*)

is the worst case mode which were recorded in this report.

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen Southern LCS Compliance Testing Laboratory Ltd. Address:B Area, 1-2F, Building B, Zhongyu Green High-Tech Indusrial Park,Wenge Road,Heshuikou, Gongming Street,Guangming New District,Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

Disturbance voltages Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Receiver	R&S	ESR3	102075	July. 24, 2020	July. 23, 2021
LISN	R&S	ENV216	101375	July. 26, 2020	July. 25, 2021
Software	Frad	EZ-EMC	EMC-CON 3A1	١	١

5.2 Test Instrument Used

ME Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	July. 24, 2020	July. 23, 2021	
3-Loop Antenna	DAZE	ZN30401	13017	July. 26, 2020	July. 25, 2021	
Software	Frad	EZ-EMC	EMC-CON 3A1	١	/	

	Radiated disturbance Test (966 chamber)							
Equipment	Manufacturer	Model# Serial#		Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	July. 27, 2020	July. 26, 2021			
Receiver	R&S	ESR3	102075	July. 29, 2020	July. 28, 2021			
Receiver	R&S	ESRP	101154	July. 29, 2020	July. 28, 2021			
Amplifier	Schwarzbeck	BBV9718	9718-309	July. 25, 2020	July. 24, 2021			
Amplifier	Schwarzbeck	BBV9744	9744-0037	July. 25, 2020	July. 24, 2021			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163- 942	July. 29, 2020	July. 28, 2021			
Horn Antenna	SCHWARZBE CK	BBHA9120 D	1201	July. 29, 2020	July. 28, 2021			
Software	Frad	EZ-EMC	FA-03A2 RE	١	/			

LCSTRF-S-001-A-2

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

Harmonic / Flicker Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Harmonic & Flicker Tester	LAPLAEC	AC2000 A	439263	July. 29, 2020	July. 28, 2021		
AC Power Supply	LAPLAEC	PCR400 0M	631589	July. 29, 2020	July. 28, 2021		
Software	TTI	HA-PC Link	3.01	/	/		

Electrostatic discharge immunity Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
ESD Tester	KIKISUI	KES4201 A	UH002321	July. 28, 2020	July. 27, 2021	

Radio frequency electromagnetic fieldsTest						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power meter	Keysight	E4419	GB4242144 0	July. 29, 2020	July. 28, 2021	
Power sensor	Keysight	E9300A	US3921130 5	July. 29, 2020	July. 28, 2021	
Power sensor	Keysight	E9300A	US3921165 9	July. 29, 2020	July. 28, 2021	
Amplifier	SKET	HAP-8010 00M-250W	/	July. 25, 2020	July. 24, 2021	
Amplifier	SKET	HAP-8010 00M-75W	/	July. 25, 2020	July. 24, 2021	
Amplifier	SKET	HAP-8010 00M-50W	/	July. 25, 2020	July. 24, 2021	
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	077	١	١	
Field Probe	Narda	EP-601	80256	July. 25, 2020	July. 24, 2021	
Signal Generator	Aglilent	N5181A	MY5014374 8	July. 25, 2020	July. 24, 2021	
Software	SKET	EMC-S	1.2.0.18	١	1	

Fast transients and Surge and Voltage dips and interruptions immunity Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Compact Generator	TRANSIENT	TRA2000	646	July. 29, 2020	July. 28, 2021			
Coupling Clamp	PARTNER	CN-EFT1000	CN-EFT100 0-1624	July. 29, 2020	July. 28, 2021			

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen,China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

	Injected currents immunity Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
C/S Test System	SCHLODER	CDG-600 0-75	126B1405/ 2016	July. 25, 2020	July. 24, 2021			
Attenuator	SCHLODER	6DB DC-1G	HA1630	July. 25, 2020	July. 24, 2021			
CDN	SCHLODER	CDN M2/M3	A2210389/ 2016	July. 25, 2020	July. 24, 2021			
Injection Clamp	SCHLOBER	EMCL-20	132A1272/ 2016	July. 25, 2020	July. 24, 2021			
Software	Software HUBERT		1.4.1.0	١	١			

6. DISTURBANCE VOLTAGES

6.1 Block Diagram Of Test Setup

For mains ports:

6.2 Limit

Disturbance voltage limits at mains terminals

Frequency range	Limits dB(µV)					
(MHz)	Quasi-peak	Average				
0,009 to 0,05	110					
0,05 to 0,15	90 to 80*					
0,15 to 0,50	66 to 56*	56 to 46*				
0,50 to 5	56	46				
5 to 30	60	50				

Note:

1. The lower limit shall apply at the transition frequencies.

2. *Decreasing linearly with logarithm of frequency.

3. For electrodeless lamps and luminaries, the limit in the frequency range of 2.54 M let to 20 d P(u) () suggesting a local conditional conditions and 2.2 d P(u) () suggesting a local conditional conditions are conditioned as 2.2 d P(u) () suggesting a local conditional conditions are conditioned as 2.2 d P(u) () and 2.2 d P(u) () are conditioned as 2.2 d P(u) () and 2.2 d P(u) () are conditioned as 2.2 d P(u) () and 2.2 d P(u) () are conditioned as 2.2 d P(u) () are conditioned a

2.51MHz to 3MHz is 73 dB(μ V) quasi-peak and 63 dB(μ V) average.

6.3 Test procedure

For mains ports:

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 Test Result

Temperature:	23 !	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1669	17.86	9.50	27.36	65.11	-37.75	QP	
2		0.1669	-11.09	9.50	-1.59	55.11	-56.70	AVG	
3		0.5821	-3.53	9.93	6.40	56.00	-49.60	QP	
4		0.5821	-15.69	9.93	-5.76	46.00	-51.76	AVG	
5		1.6046	6.52	9.58	16.10	56.00	-39.90	QP	
6		1.6046	-5.53	9.58	4.05	46.00	-41.95	AVG	
7		2.4267	4.96	9.62	14.58	56.00	-41.42	QP	
8		2.4267	-10.11	9.62	-0.49	46.00	-46.49	AVG	
9		7.4939	5.77	9.72	15.49	60.00	-44.51	QP	
10		7.4939	-2.88	9.72	6.84	50.00	-43.16	AVG	
11		20.4902	9.91	9.79	19.70	60.00	-40.30	QP	
12		20.4902	-1.53	9.79	8.26	50.00	-41.74	AVG	

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz		dB	dBuV	dBuV	dB	Detector	Comment
1	0.1815	16.87	9.48	26.35	64.42	-38.07	QP	
2	0.1815	-10.79	9.48	-1.31	54.42	-55.73	AVG	
3	0.5595	2.64	9.83	12.47	56.00	-43.53	QP	
4	0.5595	-14.05	9.83	-4.22	46.00	-50.22	AVG	
5	1.5900	4.50	9.58	14.08	56.00	-41.92	QP	
6	1.5900	-7.16	9.58	2.42	46.00	-43.58	AVG	
7	2.5081	5.73	9.63	15.36	56.00	-40.64	QP	
8	2.5081	-10.67	9.63	-1.04	46.00	-47.04	AVG	
9	7.6246	7.18	9.71	16.89	60.00	-43.11	QP	
10	7.6246	-4.52	9.71	5.19	50.00	-44.81	AVG	
11 *	14.2396	18.88	9.70	28.58	60.00	-31.42	QP	
12	14.2396	-2.09	9.70	7.61	50.00	-42.39	AVG	

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

LCSTRF-S-001-A-2 Shenzhen Southern LCS Compliance Testing Laboratory Ltd. AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen,China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

7. RADIATED DISTURBANCE (9KHz-30MHz)

7.1 Block Diagram Of Test Setup

7.2 Limits

Frequency	Limits for Loop Diameter (dBµA)				
riequency	2m				
9KHz ~ 70KHz	88				
70KHz ~ 150KHz	88 ~ 58*				
150KHz ~ 3.0MHz	58 ~ 22*				
3.0MHz ~ 30MHz	22				

Note:

1. At the transition frequency the lower limit applies.

2. * Decreasing linearly with the logarithm of the frequency. For electrodeless lamps and luminaries, the limit in the frequency range of 2.2MHz to 3.0MHz is $58dB(\mu A)$ for 2m.

7.3 Test Procedure

a. The Product was placed on a wooden table in the center of a loop antenna.

b. The induced current in the loop antenna was measured by means of a current probe and the test receiver. Three field components were checked by means of a coaxial switch.

c. The frequency range from 9 KHz to 30MHz is investigated. The receiver was measured with the quasi-peak detector. The RBW of the receiver was set at 200Hz in 9 kHz \sim 150 kHz and 9 kHz in 150 kHz \sim 30MHz.

7.4 Test Results

Temperature:	23°C	Relative Humidity:	54%
Pressure:	101kPa	Ant. Polarity	Х
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuA	dBuA	dB	Detector	Comment
1	0.1995	-29.61	10.43	-19.18	54.57	-73.75	QP	
2	0.5856	-28.71	10.51	-18.20	41.63	-59.83	QP	
3	1.4700	-29.50	10.98	-18.52	30.57	-49.09	QP	
4	3.4940	-31.49	11.03	-20.46	22.00	-42.46	QP	
5	9.3460	-30.78	9.94	-20.84	22.00	-42.84	QP	
6 *	12.7420	-27.18	9.87	-17.31	22.00	-39.31	QP	

LCSTRF-S-001-A-2 Shenzhen Southern LCS Compliance Testing Laboratory Ltd. AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China

Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

Temperature:	23°C	Relative Humidity:	54%
Pressure:	101kPa	Ant. Polarity	Y
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuA	dBuA	dB	Detector	Comment
1	0.1737	-27.84	10.43	-17.41	56.24	-73.65	QP	
2	0.2540	-28.71	10.44	-18.27	51.67	-69.94	QP	
3	0.7338	-29.45	10.57	-18.88	38.92	-57.80	QP	
4	1.5859	-28.83	11.05	-17.78	29.66	-47.44	QP	
5	4.2419	-29.23	10.60	-18.63	22.00	-40.63	QP	
6 *	12.7420	-28.18	9.87	-18.31	22.00	-40.31	QP	

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China

Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

Temperature:	23°C	Relative Humidity:	54%
Pressure:	101kPa	Ant. Polarity	Z
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuA	dBuA	dB	Detector	Comment
1	0.1940	-28.71	10.43	-18.28	54.91	-73.19	QP	
2	0.5856	-28.71	10.51	-18.20	41.63	-59.83	QP	
3	1.4700	-28.50	10.98	-17.52	30.57	-48.09	QP	
4	3.4940	-29.49	11.03	-18.46	22.00	-40.46	QP	
5	8.7620	-29.52	9.97	-19.55	22.00	-41.55	QP	
6 *	12.7420	-28.18	9.87	-18.31	22.00	-40.31	QP	

Remark:

- 1. All readings are Quasi-Peak values.
- 2. Factor = Antenna factor+ Cable Loss.

8. RADIATED DISTURBANCE (30MHZ -300MHZ)

8.1 Block Diagram Of Test Setup

8.2 Limits

Frequency (MHz)	Quasi-peak limits at 3m dB(µV/m)
30-230	40
230-300	47

Note: The lower limit shall apply at the transition frequencies.

8.3 Test Procedure

a. The Product was placed on the nonconductive turntable 0.8 m above the ground at a chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

8.4 Test Results

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Horizontal
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	42.4738	24.58	-15.27	9.31	40.00	-30.69	QP			
2	49.9024	24.32	-14.86	9.46	40.00	-30.54	QP			
3	57.9590	24.62	-15.69	8.93	40.00	-31.07	QP			
4	101.1862	25.19	-16.36	8.83	40.00	-31.17	QP			
5 *	192.3629	28.40	-16.79	11.61	40.00	-28.39	QP			
6	250.1044	29.62	-15.15	14.47	47.00	-32.53	QP			

LCSTRF-S-001-A-2 Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Vertical
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

9. HARMONIC CURRENT EMISSION(H)

9.1 Block Diagram of Test Setup

9.2 Limit

EN 61000-3-2:2014 Clause 7.

9.3 Test Procedure

a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

b. The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.

Test Results 9.4

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Medei	Working
Test Voltage :	AC 230V/50Hz	Test Mode.	working

LCSTRF-S-001-A-2

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China

Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

_

1	Filtered	Limit	Aug.	%Limi	k∖ ax.	%Limr	Ν	Filtered	Limit	Avg.	%Lim	I.tax.	%Limi
1	1CE 3.6						2	C.7	200.0	1.3	0.6	2.E	1.3
3	*7 0.^	270 0.2	370.3	13.7	370.8	13.7	4	1.0		0.9		1. 4	
E	71.2	100 0.0	70.8	7.1	71.2	7.1	6	0.0		0.4		1.0	
7	2£	70 0.0	24.5	3.5	24.8	3.E	В	0.3		0.2		0.7	
9	*?	E0 0.0	34.3	6.9	34.5	6.9	10	0.0		0.2		0.7	
11	1z.?	30 0.0	12.8	4.3	12.9	4.3	12	0.0		0.2		0.3	
13	.1	30 0.0	6.3	2.1	6.4	2.1	14	0.0		0.2		0.3	
ΙE	11.1	30 0.0	11.3	3.8	11.5	3.B	16	0.0		0.1		0.3	
17	?*	30 0.0	5.2	1.7	5.3	1.B	18	0.0		0.0		0.0	
19	z.?	30 0.0	2.4	0.8	2.5	0.B	20	0.0		0.0		0.0	
21		30 0.0	4.8	1.6	5.0	1.7	22	0.0		0.2		0.3	
23	*.X	30 0.0	3.4	1.1	3.5	1.2	24	0.0		0.0		0.0	
2E	1.£	30 0.0	0.9	0.3	1.0	0.3	US	0.0		0.0		0.0	
27	Z.*	30 0.0	3.1	1.0	3.2	1.1	28	0.0		0.0		0.0	
29	1.^	30 0.0	1.6	0.5	1.7	0.E	30	0.0		0.0		0.0	
31	0.7	30 0.0	0.5	0.2	0.7	0.2	*2	0.0		0.0		0.0	
33	1.^	30 0.0	1.4	0.5	1.4	0.E	34	0.0		0.0		0.0	
3E	1.£	30 0.0	1.2	0.4	1.4	0.E	36	0.0		0.0		0.0	
7	0.	30 0.0	0.2	0.1	0.3	0.1	GB	0.0		0.0		0.0	
39	1.£	30 0.0	0.9	0.3	1.0	0.3	40	0.0		0.0		0.0	
Р	8.*	94B.7	7.1	0.7	7.5	0.B							

10. VOLTAGE FLUCTUATIONS & FLICKER(F)

10.1 Block Diagram of Test Setup

10.2 Limit

EN 61000-3-3:2013 Clause 5.

10.3 Test Procedure

a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

b. During the flick test, the measure time shall include that part of whole operation cycle in which the Product produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

10.4 Test Results

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Medei	Working
Test Voltage :	AC 230V/50Hz	Test Mode.	

fl OIN D 0tS

voltage var4at4ons	
var4at4on over last 1000ms	s: +4.56%
withir	n: +0.03% and -0.02%
Exar eve leVels	s: +4.686 and +4.496
Tol er ance band cenzr	e: +4. 56a
Prese no so as	e: So e ady
Dur azJ or	n: 599.384 seconds
d (max)	••••••••••••••••••••••••••••••••••••••
$L_{\text{max}} = L_{\text{max}} = L_{$	
Lass durazion of $d(z)$ over 3.32	x: 0. 00 seconds
$z\{\max\}$ oVer 3. 30	6: 0.00 seconds PASS
Gr eacesc d(c} upward	d: +0.006
cr eazesz d(c} downwar d	d: 0.006
Lass d (c) differ ence	e: 0.006
maximun d(c)	0.00% PASS
shorz Tern Flñcker Psz	z: 0.00 PAS 5

11. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA

Product Standard	EN 61547: 2009
CRITERION A	During the test, no change of the lumimous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.
	During the test the luminous intensity may change to any value. After the test the luminous intensity shall be restored to its initial value within 1 min.
CRITERION B	Regulating controls need not function during the test, but after the test the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.
	During and after the test any change of the luminous intensity is allowed and the lamp(s) may be extinguished. After the test, within 30 min, all functions shall return to normal if necessary by temporary interruption of the mains supply and/or operating the regulating control.
CRITERION C	Additional requirement for lighting equipment incorporating a starting device:
	After the test the lighting equipment is switched off. After half an hour it is switched on again. The lighting equipment shall start and operate as intended.

12. ELECTROSTATIC DISCHARGE (ESD)

12.1 Test Specification

Test Port Discharge Impedance Discharge Mode Discharge Period

- Enclosure port
- : 330 ohm / 150 pF
- : Single Discharge
- : one second between each discharge

12.2 Block Diagram of Test Setup

12.3 Test Procedure

a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.

b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

c. The time interval between two successive single discharges was at least 1 second.

d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.

e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.

f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.

h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

12.4 Test Results

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Mede:	Working
Test Voltage :	AC 230V/50Hz		

Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Required Level	Performance Criterion
	Conductive Surfaces	2, 4	10	В	А
Contact Discharge	Indirect Discharge HCP	2, 4	10	В	А
	Indirect Discharge VCP	2, 4	10	В	А
Air Discharge	Slots, Apertures, and Insulating Surfaces	2, 4, 8	10	В	А
Note: N/A					

13. RADIO FREQUENCY ELECTROMAGNETIC FIELDS(RS)

- 13.1 Test Specification
 - Test Port Step Size Modulation Dwell Time Polarization

- Enclosure port
- : 1%

5

2

- 1kHz, 80% AM
- : 1 second
- : Horizontal & Vertical

13.2 Block Diagram of Test Setup

13.3 Test Procedure

a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.

b. The frequency range is swept from 80MHz to 1000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1%.

c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

13.4 Test Results

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Mede:	Marking
Test Voltage :	AC 230V/50Hz	Test Mode.	VVOIKING

Frequency	Position	Field Strength (V/m)	Required Level	Performance Criterion
80 - 1000MHz	Front, Right, Back, Left	3	A	А
Note: N/A				

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen,China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

14. FAST TRANSIENTS(EFT)

14.1 Test Specification

Test Port	:	input a.c. power port
Impulse Frequency	:	5 kHz
Impulse Wave-shape	:	5/50 ns
Burst Duration	:	15 ms
Burst Period	:	300 ms
Test Duration	:	2 minutes per polarity

14.2 Block Diagram of EUT Test Setup

For input a.c. power port:

14.3 Test Procedure

a. The Product and support units were located on a non-conductive table above ground reference plane.

b. A 0.5m-long power cord was attached to Product during the test.

14.4 Test Results

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Toot Mode:	Marking
Test Voltage :	AC 230V/50Hz	Test Mode.	WORKING

Coupling	Voltage (kV)	Polarity	Required Level	Performance Criterion
AC MainsL-N	1.0	±	В	А
Note: N/A				

15. SURGES IMMUNITY TEST

15.1 Test Specification

Test Port Wave-Shape

: input a.c. power port

:

Open Circuit Voltage - 1.2 / 50 us

Short Circuit Current - 8 / 20 us

Pulse Repetition Rate Test Events

1 pulse / min.
Five positive polarity pulses at the 90° phase angel Five negative polarity pulses at the 270° phase angle

15.2 Block Diagram of EUT Test Setup

Ground Reference Plane

15.3 Test Procedure

a. The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.

b. The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

15.4 Test Result

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Mode:	Marking
Test Voltage :	AC 230V/50Hz	Test Mode.	VV01KI1g

Coupling Line	Voltage (kV)	Phase Angle	Required Level	Performance Criterion
L + N	+1	90°	C	А
	-1	270°		
Note: N/A				

16. INJECTED CURRENTS(CS)

16.1 Test Specification

Test Port	: input a.c. power port
Step Size	: 1%
Modulation	: 1kHz, 80% AM
Dwell Time	: 1 second

16.2 Block Diagram of EUT Test Setup

For input a.c. power port:

16.3 Test Procedure

For input a.c. power port:

a. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.

b. The frequency range is swept from 150 kHz to 80, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1% of fundamental.

c. The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

16.4 Test Result

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Test Mede	Working
Test Voltage :	AC 230V/50Hz	Test Mode.	

Inject Line	Frequency (MHz)	Voltage Level (V r.m.s.)	Required Level	Performance Criterion
a.c. port	0.15 - 80	3	А	А
Note: N/A				

LCSTRF-S-001-A-2 Shenzhen Southern LCS Compliance Testing Laboratory Ltd. AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China

Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

17. VOLTAGE DIPS AND INTERRUPTIONS (DIPS)

17.1 Test Specification

Test Port: input a.c. power portPhase Angle: 0°, 180°Test cycle: 3 times

17.2 Block Diagram of EUT Test Setup

17.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground floor.
- b. Set the parameter of tests and then perform the test software of test simulator.
- c. Conditions changes to occur at 0 degree crossover point of the voltage waveform.

17.4 Test Result

Temperature:	23 °C	Relative Humidity:	54%
Pressure:	101kPa	Teat Made	Working
Test Voltage :	AC 240V/50Hz	Test Mode.	

Voltage Dips:					
Test Level % <i>U</i> _T	Voltage dips in % <i>U</i> _T	Duration (cycles)	Required Level	Performance Criterion	
70	30	10	С	B*	
Voltage Interruptions:					
Test Level % <i>U</i> T	Voltage dips in % <i>U</i> T	Duration (cycles)	Required Level	Performance Criterion	
0	100	0.5	В	B*	
Note: The EUT Unable to working during testing, and it end of the test can be restored automatically					

18. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen, China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

EUT Photo 3

EUT Photo 4

19. EUT TEST SETUP PHOTOGRAPHS

CE

RE

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen,China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

H/F

ESD

LCSTRF-S-001-A-2 Shenzhen Southern LCS Compliance Testing Laboratory Ltd. AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New

RS

EFT& Surges & DIPS

LCSTRF-S-001-A-2 <u>Shenzhen Southern LCS Compliance Testing Laboratory Ltd.</u> AddB Area, 1-2F, Building B, Zhongyu Green High-tech Industrial Park, Wenge Road, Heshuikou, Gongming Street, Guangming New District, Shenzhen,China Tel+(86) 0755-29871520 | Fax+(86) 0755-29871521 | E-mailwebmaster@lcs-cert.com | http:// www.lcs-cert.com

CS

XXXXXENDOFREPORTXXXXX