## SIEMENS



**ACVATIX™** 

## Modulating refrigerant valves, PN 63

### MVS661..N

for ammonia (R717) and safety refrigerants

- · One valve type for expansion, hot-gas and suction throttle applications
- Hermetically sealed
- Selectable standard interface DC 0/2...10 V or DC 0/4...20 mA
- · High resolution and control accuracy
- Precise positioning control and position feedback signal
- Short positioning time (< 1 second)
- Closed when deenergized
- Robust and maintenance-free
- DN 25 with k<sub>vs</sub> values from 0.10 to 6.3 m<sup>3</sup>/h

#### Use

The MVS661..N refrigerant valve is designed for modulating control of refrigerant circuits including chillers and heat pumps. It is suitable for use in expansion, hot-gas and suction throttle applications. In addition to ammonia (R717), the valve can handle all standard safety refrigerants, noncorrosive gases / liquids and  $CO_2$  (R744). It is not suited for use with inflammable refrigerants.

| Product number | DN | k <sub>vs</sub>     | $\mathbf{k}_{vs}$ reduced | Δp <sub>max</sub> | Q <sub>0</sub> E | Q₀ H | Q <sub>0</sub> D | SNA  | P <sub>med</sub> |
|----------------|----|---------------------|---------------------------|-------------------|------------------|------|------------------|------|------------------|
|                |    | [m <sup>3</sup> /h] | [m <sup>3</sup> /h]       | [MPa]             | [kW]             | [kW] | [kW]             | [VA] | [W]              |
| MVS661.25-016N | 25 | 0,16                | 0,10                      |                   | 95               | 10   | 2                |      |                  |
| MVS661.25-0.4N | 25 | 0,40                | 0,25                      |                   | 245              | 26   | 5                |      |                  |
| MVS661.25-1.0N | 25 | 1,0                 | 0,63                      | 2,5               | 610              | 64   | 12               | 22   | 12               |
| MVS661.25-2.5N | 25 | 2,5                 | 1,6                       |                   | 1530             | 159  | 29               |      |                  |
| MVS661.25-6.3N | 25 | 6,3                 | 4,0                       |                   | 3850             | 402  | 74               |      |                  |

The refrigeration capacity refers to applications using ammonia.

k<sub>vs</sub> = Nominal flow rate of refrigerant through the fully open valve (H<sub>100</sub>) at a differential pressure of 100 kPa (1 bar) to VDI 2173
 If required k<sub>vs</sub>-value and refrigeration capacity Q<sub>0</sub> can be reduced to 63 %, refer to «k<sub>vs</sub> re-

If required  $k_{vs}$ -value and refrigeration capacity  $Q_0$  can be reduced to 63 %, refer to « $k_{vs}$  reduction» on page 3

- $Q_0 E$  = Refrigeration capacity in expansion applications
- $Q_0 H =$  Refrigeration capacity in hot-gas bypass applications

 $Q_0 D$  = Refrigeration capacity in suction throttle applications and  $\Delta p$  = 0.5 bar

 $S_{NA}$  = nominal apparent power for selecting the transformer

P<sub>med</sub> = typical power consumption

The pressure drop across evaporator and condenser is assumed to be 0.3 bar each, and 1.6 bar upstream of the evaporator (e.g. spider).

The capacities specified are based on superheating by 6 K and subcooling by 2 K.

#### Accessories

Valve insert ASR..N

| Product number | DN | k <sub>vs</sub>     |
|----------------|----|---------------------|
|                |    | [m <sup>3</sup> /h] |
| ASR0.16N       | 25 | 0,16                |
| ASR0.4N        | 25 | 0,40                |
| ASR1.0N        | 25 | 1,0                 |
| ASR2.5N        | 25 | 2,5                 |
| ASR6.3N        | 25 | 6,3                 |

The refrigeration capacity for various refrigerants and operating conditions can be calculated for the 3 types of application using the tables starting from page 12. For accurate valve sizing, the valve selection program "Refrigeration VASP" is recommended.

#### Ordering

Example:

Valve body and magnetic actuator form one integral unit and cannot be separated.

| Product number | Stock number   | Designation       | Quantity |
|----------------|----------------|-------------------|----------|
| MVS661.25-0.4N | MVS661.25-0.4N | Refrigerant valve | 1        |

Spare parts Replacement electronics ASR61 Should the valve's electronics become faulty, the entire electronics housing is to be replaced by spare part ASR61, which is supplied complete with Mounting Instructions (74 319 0270 0).

Rev. no.

See table on page 16.

Valve insert ASR..N



If plant is resized, or should excessive wear impact the valve's performance, a new valve insert ASR...N will restore the valve's characteristics to its original specifications.

The valve insert is supplied complete with Mounting Instructions (74 319 0486 0).

| Features and benefits                                             | <ul> <li>4 selectable standard signals for setpoint and measured value</li> <li>DIL switch to reduce the k<sub>vs</sub> value to 63 % of the nominal value</li> <li>Potentiometer for adjustment of minimum stroke for suction throttle applications</li> <li>Automatic stroke calibration</li> <li>Forced control input for "Valve closed" or "Valve fully open"</li> <li>LED for indicating the operating state</li> </ul> |                                                              |                                 |                                |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|--------------------------------|--|--|--|
| Control                                                           | The MVS661N refrigerant valve can be driven by Siemens or third-party controllers that deliver a DC 0/210 V or DC 0/420 mA output signal.<br>For optimum control performance, we recommend a 4-wire connection between controller and valve. When operating on DC voltage, a 4-wire connection is <b>mandatory</b> !<br>The valve stroke is proportional to the control signal.                                              |                                                              |                                 |                                |  |  |  |
| Spring return function                                            | If the positioning si return spring will a                                                                                                                                                                                                                                                                                                                                                                                   | ignal is interrupted, or in th<br>utomatically close control | ne event of a po<br>path 1 → 3. | ower failure, the valve's      |  |  |  |
| Operator controls and<br>indicators in the<br>electronics housing | <ul> <li>1 Connection terminals</li> <li>2 LED for indication of operating state</li> <li>3 Minimal stroke setting potentiometer Rv</li> <li>4 Autocalibration</li> <li>5 DIL switches for mode control</li> </ul>                                                                                                                                                                                                           |                                                              |                                 |                                |  |  |  |
| Configuration of                                                  | Switch                                                                                                                                                                                                                                                                                                                                                                                                                       | Function                                                     | ON / OFF                        | Description                    |  |  |  |
| DIL switches                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | ON                              | Current [mA]                   |  |  |  |
|                                                                   | 417440<br>1                                                                                                                                                                                                                                                                                                                                                                                                                  | Positioning signal Y                                         | OFF                             | Voltage [V] <sup>1)</sup>      |  |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              | Desitioning range V and U                                    | ON                              | DC 210 V, 420 mA               |  |  |  |
|                                                                   | 4144<br>2                                                                                                                                                                                                                                                                                                                                                                                                                    | Positioning range Y and U                                    | OFF                             | DC 010 V, 020 mA <sup>1)</sup> |  |  |  |
|                                                                   | NO NO                                                                                                                                                                                                                                                                                                                                                                                                                        | Position feedback II                                         | ON                              | Current [mA]                   |  |  |  |
|                                                                   | 4744<br><b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                             | r Usilion reedback U                                         | OFF                             | Voltage [V] <sup>1)</sup>      |  |  |  |
|                                                                   | <b>NO</b>                                                                                                                                                                                                                                                                                                                                                                                                                    | Nominal flow rate k                                          | ON                              | 63 %                           |  |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | OFF                             | 100 % <sup>1)</sup>            |  |  |  |





When  $k_{vs}$  reduction (DIL switch 4 in position ON) the stroke will be limited to 63 % mechanical stroke. 63 % of full stroke then corresponds to an input / output signal of 10 V. If, in addition, the stroke is limited to 80 %, for example, the minimum stroke will be

0.63 x 0.8 = 0.50 of full stroke.

#### Minimum stroke setting



In the case of the suction throttle valve, it is essential that a minimum stroke limit be maintained to ensure compressor cooling and efficient oil return. This can be achieved with a reinjection valve, a bypass line across the valve, or a guaranteed minimum opening of the valve. The minimum stroke can be defined via the controller and control signal Y, or it can be set directly with potentiometer Rv.

The **factory setting** is zero (mechanical stop in counterclockwise direction, CCW). The minimum stroke can be set by turning the potentiometer clockwise (CW) to a maximum of 80 %  $k_{vs}$ .

## Attention $\triangle$ Under no circumstances must potentiometer Rv be used to limit the stroke on expansion applications. It must be possible to close the valve fully.



## Indication of operating state

| LED   | Indicat  | ion           | Function            | Remarks, troubleshooting                                     |  |  |
|-------|----------|---------------|---------------------|--------------------------------------------------------------|--|--|
| Green | Lit      | _it Control m |                     | Automatic operation; everything o.k.                         |  |  |
|       | Flashing |               | Calibration in pro- | Wait until calibration is finished                           |  |  |
|       | gress    |               | gress               | (green or red LED will be lit)                               |  |  |
| Red   | Red Lit  |               | Calibration error   | Recalibrate (operate button in opening 1x)                   |  |  |
|       |          | ~ <b>T</b>    |                     | Replace electronics module                                   |  |  |
|       |          |               | Internal error      |                                                              |  |  |
|       | Flashing |               | Mains fault         | Check mains network (outside the frequency or voltage range) |  |  |
| Both  | Dark     |               | No power supply     | Check mains network, check wiring                            |  |  |
|       |          | 0             | Electronics faulty  | Replace electronics module                                   |  |  |

#### Connection type 1)

#### The 4-wire connection should always be given preference!

|                | SNA  | PMED | I <sub>F</sub> | Wire cross-section [mm <sup>2</sup> ] |     |                   |
|----------------|------|------|----------------|---------------------------------------|-----|-------------------|
|                |      |      |                | 1.5                                   | 2.5 | 4.0 <sup>2)</sup> |
| Product number | [VA] | [W]  | [A]            | max. cable length L [m]               |     |                   |
| MVS661N        | 22   | 12   | 1.64 A         | 65                                    | 110 | 160               |
| MVS661N        | 22   | 12   | 1.64 A         | 20                                    | 35  | 50                |

4-wire connection 3-wire connection

S<sub>NA</sub> = nominal apparent power for selecting the transformer

 $P_{MED}$  = typical power consumption

= required slow fuse

= max. cable length; with 4-wire connections, the max. permissible length of the separate 1.5 mm<sup>2</sup> copper positioning signal wire is 200 m

<sup>1)</sup> All information at AC 24 V

Т

<sup>2)</sup> With 4 mm<sup>2</sup> electrical wiring reduce wiring cross-section for connection inside valve to 2.5 mm<sup>2</sup>.

#### Sizing

For straightforward valve sizing, refer to the tables for the relevant application (from page 9).

For accurate valve sizing, we recommend to make use of the valve sizing software "Refrigeration VASP", available from your local Siemens office.

Notes The refrigeration capacity  $Q_0$  is calculated by multiplying the mass flow by the specific enthalpy differential found in the h, log p-chart for the relevant refrigerant. To help determine the refrigeration capacity more easily, a selection chart is provided for each application (from page 10). With direct or indirect hot-gas bypass applications, the enthalpy differential of  $Q_c$  (the condenser capacity) must also be taken into account when calculating the refrigeration capacity.

If the evaporating and/or condensing temperatures are between the values shown in the tables, the refrigeration capacity can be determined with reasonable accuracy by linear interpolation (refer to the application examples from page 11).

At the operating conditions given in the tables, the permissible differential pressure  $\Delta p_{max}$  (25 bar) across the valve is within the admissible range for these valves. If the evaporating temperature is raised by 1 K, the refrigeration capacity increases by about 3 %. If, by contrast, subcooling is increased by 1 K, the refrigeration capacity increases by about 1 to 2 % (this applies only to subcooling down to approximately 8 K).

#### **Engineering notes**

Depending on the application, it may be necessary to observe additional Installation Instructions and fit appropriate safety devices (e.g. pressurestats, full motor protection, etc.).



In order not to damage the seal inside the valve insert, the plant must be vented on the low-pressure side after the pressure test has been made (valve port AB), or the valve

must be fully open during the pressure test and during venting (power supply connected and positioning signal at maximum or forced opening by G  $\rightarrow$  ZC).

# **Expansion application** To prevent the formation of flash gas on expansion applications, the velocity of the refrigerant in the fluid pipe must not exceed 1 m/s. To assure this, the diameter of the fluid pipe must under certain circumstances be greater than the nominal size of the valve.



- a) The differential pressure over reduction must be less than half the differential pressure  $\Delta p_{FL}$ .
- b) The inlet path between diameter reduction and expansion valve inlet
  - Must straight for at least 600 mm
  - May not contain any valves

A filter / dryer must be mounted upstream of the expansion valve. The valve is not explosion-proof.

#### Mounting notes

The valve should be mounted and commissioned by qualified staff. The same applies to the replacement electronics and the configuration of the controller (e.g. SAPHIR or PolyCool).





- The refrigerant valves can be mounted in any orientation, but upright mounting is preferable.
- Arrange the pipework in such a way that the valve is not located at a low point in the plant where oil can collect.
- The pipes should be fitted in such a way that the alignment does not distort the valve connections. Fix the valve body so that that it cannot vibrate. Vibration can lead to burst connection pipes.
- Before soldering the pipes, ensure that the direction of flow through the valve is correct.
- The pipes must be soldered with care. To avoid dirt and the formation of scale (oxide), inert gas is recommended for soldering.
- The flame should be large enough to ensure that the junction heats up quickly and the valve does not get too hot.
- The flame should be directed away from the valve.
- During soldering, cool the valve with a wet cloth, for example, to ensure that it does not become too hot.

- Port B must be sealed off when a 2-port valve (AB → A) is used.
- The valve body and the connected pipework should be lagged.
- The actuator must not be lagged.

The valve is supplied complete with Mounting Instructions 74 319 0707 0.

| Maintenace notes |                                                                                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------|
|                  | The refrigerant valve is maintenance-free.                                                                            |
| Repair           | If the valve's interior is subjected to great wear, the valve can be repaired by replacing the ASRN valve insert.     |
| Disposal         | The actuator contains electrical and electronic components and must not be disposed of together with domestic waste.  |
|                  | Legislation may demand special handling of certain components, or it may be sensible from an ecological point of view |
| ∕ <b>⊢-</b> 0∖   | Current local legislation must be observed.                                                                           |
| Warranty         |                                                                                                                       |

Application-specific technical data must be observed. If specified limits are not observed, Siemens Building Technologies / CPS Products will nor assume any responsibility.

#### **Technical data**

| Functional actuator   | data    |                               |                    |                                                  |  |
|-----------------------|---------|-------------------------------|--------------------|--------------------------------------------------|--|
| Power supply          |         | Extra low-voltage only (SEI   | _V, PELV)          |                                                  |  |
|                       | AC 24 V | Operating voltage             |                    | AC 24 V ± 20 %                                   |  |
|                       |         | Frequency                     |                    | 4565 Hz                                          |  |
|                       |         | Typical power consumption     | n P <sub>med</sub> | 12 W                                             |  |
|                       |         |                               | Stand by           | < 1 W (valve closed)                             |  |
|                       |         | Rated apparent power $S_{NA}$ |                    | 22 VA (for selecting the transformer)            |  |
|                       |         | Required fuse I <sub>F</sub>  |                    | 1,6…4 A, slow                                    |  |
|                       | DC 24 V | Operating voltage             |                    | DC 2030 V                                        |  |
|                       |         | Current draw                  |                    | 0,5 A / 2 A (max.)                               |  |
| Signal inputs         |         | Positioning signal Y          |                    | DC 0/210 V or DC 0/420 mA                        |  |
|                       |         | Impedance                     | DC 0/210 V         | 100 kΩ // 5nF (load < 0,1 mA)                    |  |
|                       |         |                               | DC 0/420 mA        | 240 Ω // 5nF                                     |  |
|                       |         | Forced control ZC             |                    |                                                  |  |
|                       |         | Input impedance               |                    | 22 kΩ                                            |  |
|                       |         | Close valve (ZC connec        | ted to G0)         | < AC 1 V; < DC 0,8 V                             |  |
|                       |         | Open valve (ZC connec         | ted to G)          | > AC 6 V; > DC 5 V                               |  |
|                       |         | No function (ZC not wire      | ed)                | Positioning signal Y active                      |  |
| Signal outputs        |         | Position feedback U           | Voltage            | DC 0/210 V; load resistance $\geq$ 500 $\Omega$  |  |
|                       |         |                               | Current            | DC 0/420 mA; load resistance $\leq$ 500 $\Omega$ |  |
|                       |         | Stroke measurement            |                    | Inductive                                        |  |
|                       |         | Nonlinearity                  |                    | ± 3 % of end value                               |  |
| Positioning time      |         | Positioning time              |                    | < 1 s                                            |  |
| Electrical connection |         | Cable entry                   |                    | 3 x Ø 17 mm (for M16)                            |  |
|                       |         | Minimal wire cross-section    |                    | 0.75 mm <sup>2</sup>                             |  |
|                       |         | Maximum cable length          |                    | Refer to "Connection type", page 5               |  |

| Functional valve data | Permissible operating pressure                     | max.6.3 MPa (63 bar) <sup>1)</sup>                    |  |  |
|-----------------------|----------------------------------------------------|-------------------------------------------------------|--|--|
|                       | Differential pressure $\Delta p_{max}$             | 2.5 MPa (25 bar)                                      |  |  |
|                       | Valve characteristic (stroke, k <sub>v</sub> )     | linear (to VDI / VDE 2173)                            |  |  |
|                       | Leakage rate                                       | max. 0,002 % k <sub>vs</sub> resp.                    |  |  |
|                       | (internally across seat)                           | max. 1 NI/h gas at ∆p = 4 bar                         |  |  |
|                       |                                                    | Shut/off function, like solenoid normally closed (NC) |  |  |
|                       |                                                    | function                                              |  |  |
|                       | External seal                                      | hermetically sealed!                                  |  |  |
|                       | Permissible media                                  | Ammonia (R717), CO2 (R744) and all safety refrig-     |  |  |
|                       |                                                    | erants (R22, R134a, R404A, R407C, R507, etc);         |  |  |
|                       |                                                    | Not suited for use with inflammable refrigerants      |  |  |
|                       | Medium temperature                                 | -40120 °C; max. 140 °C for 10 min                     |  |  |
|                       | Stroke resolution $\Delta H / H_{100}$             | 1 : 1000 (H = stroke)                                 |  |  |
|                       | Hysteresis                                         | typically 3 %                                         |  |  |
|                       | Mode of operation                                  | modulating                                            |  |  |
|                       | Position when deenergized                          | control path A $\rightarrow$ AB closed                |  |  |
|                       | Mounting position <sup>2)</sup>                    | Upright to horizontal                                 |  |  |
| Materials             | Valve body                                         | steel / CrNi steel                                    |  |  |
|                       | Seat / piston                                      | CrNi steel                                            |  |  |
|                       | Sealing disk / O-rings                             | PTFE / CR (chloroprene)                               |  |  |
| Dimensions and weight | Dimensions                                         | refer to "Dimensions", page 10                        |  |  |
|                       | Weight                                             | 5.17 kg                                               |  |  |
| Pipe connections      | Solder (weld-on-ends)                              | Referring to EN 1092-1 and ASME B16.25                |  |  |
|                       |                                                    | schedule 40                                           |  |  |
|                       |                                                    | Inner diameter 22.4 mm                                |  |  |
|                       |                                                    | Outer diameter 33.7 mm                                |  |  |
| Norms and standards   | CE conformity                                      |                                                       |  |  |
|                       | to EMV-requirements                                | 2004/108/EC                                           |  |  |
|                       | Immunity                                           | EN 61000-6-2:[2005] Industrial <sup>3)</sup>          |  |  |
|                       | Emission                                           | EN 61000-6-3:[2007] Residential                       |  |  |
|                       | Electrical safety                                  | EN 60730-1                                            |  |  |
|                       | Protection class                                   | Class III to EN 60730                                 |  |  |
|                       | Pollution degree                                   | Degree 2 to EN 60730                                  |  |  |
|                       | Housing protection                                 |                                                       |  |  |
|                       | Upright to horizontal                              | IP65 to EN 60529 <sup>2)</sup>                        |  |  |
|                       | Vibration 4)                                       | EN 60068-2-6                                          |  |  |
|                       |                                                    | 5 g acceleration, 10150 Hz, 2.5 h                     |  |  |
|                       |                                                    | (5 g horizontal, max. 2 g upright)                    |  |  |
|                       | Conform to UL standards                            | UL 873                                                |  |  |
|                       | CSA, Canada                                        | C22.2 No. 24                                          |  |  |
|                       | C-TICK                                             | N 474                                                 |  |  |
|                       | Environmental compatibility                        | ISO 14001 (Environment)                               |  |  |
|                       |                                                    | SN 26250 (Environmentally competible producte)        |  |  |
|                       |                                                    |                                                       |  |  |
|                       | Pormissible operating processing                   | KL 2002/95/EG (K0HS)                                  |  |  |
|                       |                                                    | As per article 1, appring 2,1,4                       |  |  |
|                       |                                                    | Without CE marking as per article 2, spectra 2        |  |  |
|                       |                                                    | (sound engineering practice)                          |  |  |
|                       | <sup>1)</sup> To EN 12284 tested with 1,43 x opera | ting pressure at 90 bar                               |  |  |

At 45 °C < Tamb < 55 °C and 80 °C < Tmed < 120 °C the valve must be installed on its side to avoid shortening the service life of the valve electronics</li>
 Transformer 160 VA (e.g. Siemens 4AM 3842-4TN00-0EA0)
 In case of strong vibrations, use high-flex stranded wires for safety reasons.

| General                  |                     | Operation     | Transport    | Storage      |
|--------------------------|---------------------|---------------|--------------|--------------|
| environmental conditions |                     | EN 60721-3-3  | EN 60721-3-2 | EN 60721-3-1 |
|                          | Climatic conditions | Class 3K6     | Class 2K3    | Class 1K3    |
|                          | Temperature         | –2555 °C      | –2570 °C     | –545 °C      |
|                          | Humidity            | 10100 % r. h. | < 95 % r. h. | 595 % r. h.  |

#### **Connection terminals**



#### **Connection diagrams**



Dimensions in mm



#### Valve sizing with correction factor

The applications and correction tables on the following pages are designed for help with selecting the valves. To select the correct valve, the following data is required:

- Application
  - Expansion (starting on page 11)
  - Hot-gas (starting on page 13)
  - Suction throttle (starting on page 15)
- Refrigerant type

•

- Evaporating temperature t<sub>o</sub> [ °C]
- Condensing temperature t<sub>c</sub> [ °C]
- Refrigeration capacity Q<sub>0</sub> [kW]

To calculate the nominal capacity, use the following formula:

| k <sub>vs</sub> [m³/h] = Q <sub>0</sub> [kW] / K* | * K for Expansion    | = KE |
|---------------------------------------------------|----------------------|------|
|                                                   | for hot-gas          | = KH |
|                                                   | for suction throttle | = KS |

- The theoretical  $k_v$  value for the nominal refrigeration capacity of the plant should not be less than 50 % of the  $k_{vs}$  value of the selected valve
- For accurate valve sizing, the valve selection program "Refrigeration VASP" is recommended

The application examples on the following pages deal with the principles only. They do not include installation-specific details such as safety elements, refrigerant collectors, etc.

#### Use of the MVS661..N as an expansion valve

| Note                  | Observe engi<br>Typical con<br>Increased<br>The use of<br>efficiency v<br>Especially<br>Lagrandian<br>Electronic su<br>PolyCool                           | ineering nor<br>ntrol range<br>capacity the<br>f 2 or more<br>with low loa<br>suitable for<br>4 | tes page 5<br>20100 %.<br>rough bette<br>compresso<br>ds<br>fluctuating<br>3<br>3 | r us<br>rs c<br>co | se of the evaporator<br>or compressor stages significantly increa<br>indensing and evaporating pressures<br>1 = MVS661N<br>2 = evaporator<br>3 = compressor<br>4 = condenser<br>d by using additional control equipment | ises<br>(e.g.                       |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| Application example   | PolyCool).<br>Refrigerant R717C; $Q_0 = 205$ kW; $t_o = -5$ °C; $t_c = 35$ °C<br>The correct $k_{ve}$ value for the MVS661N value needs to be determined. |                                                                                                 |                                                                                   |                    |                                                                                                                                                                                                                         |                                     |  |
|                       | The importan<br>correction fac<br>polation from                                                                                                           | t section of<br>tor KE rele<br>the 4 guide                                                      | table KE fo<br>vant to the<br>values.                                             | or R<br>woi        | 717 is the area around the working poir<br>king point should be determined by line                                                                                                                                      | it. The<br>ar inter-                |  |
| Note on interpolation | In practice, th<br>ascertained v<br>can proceed                                                                                                           | ne KE, KH c<br>vill be round<br>directly with                                                   | or KS value<br>ded off by u<br>n Step 4.                                          | car<br>p to        | h be estimated because the theoretical $k_{\rm vs}$ and $30~\%$ to 1 of the 10 available $k_{\rm vs}$ values                                                                                                            | k <sub>vs</sub> -value<br>₃. So you |  |
|                       | Step 1: For                                                                                                                                               | r t <sub>c</sub> = 35 °C,                                                                       | calculate t                                                                       | hev                | value for $t_o$ = -10 °C between values 20                                                                                                                                                                              | °C and                              |  |
|                       | 40<br>Step 2 <sup>-</sup> For                                                                                                                             | °C in the ta<br>r t <sub>e</sub> = 35 °C                                                        | ble; result:<br>calculate fl                                                      | 574<br>he v        | <b>1</b><br>value for t <sub>e</sub> = 0 °C between values 20 °C                                                                                                                                                        | and 40                              |  |
|                       | °C in the table; result: <b>553</b>                                                                                                                       |                                                                                                 |                                                                                   |                    |                                                                                                                                                                                                                         |                                     |  |
|                       | Step 3: For                                                                                                                                               | $t_o = -5 \ ^\circ C$ ,                                                                         | calculate th                                                                      | ne v               | value for $t_c = 35$ °C between correction fa                                                                                                                                                                           | actors                              |  |
|                       | 574 and 553; calculated in steps 1 and 2; result: <b>450</b><br>Step 4: Calculate the theoretical k, value: result: <b>0.46 m<sup>3</sup>/h</b>           |                                                                                                 |                                                                                   |                    |                                                                                                                                                                                                                         |                                     |  |
|                       | Step 5: Sel                                                                                                                                               | ect the val                                                                                     | e; the valve                                                                      | e cl               | osest to the theoretical $k_{vs}$ value is the                                                                                                                                                                          |                                     |  |
|                       | MV                                                                                                                                                        | S661.25-0.                                                                                      | 4N                                                                                |                    |                                                                                                                                                                                                                         |                                     |  |
|                       | Step 6: Ch                                                                                                                                                | eck that the                                                                                    | e theoretical                                                                     | l K <sub>vs</sub>  | value is greater than 50 % of nominal k                                                                                                                                                                                 | t <sub>vs</sub> value               |  |
|                       | <b>KE</b> R717C                                                                                                                                           | t <sub>o</sub> = -10 °C                                                                         | t <sub>o</sub> = 0 °C                                                             |                    | Interpolation at                                                                                                                                                                                                        | t <sub>c</sub> = 35 °C              |  |
|                       | $t_c = 20 \degree C$<br>$t_c = 35 \degree C$                                                                                                              | 481<br>574                                                                                      | 376<br>553                                                                        |                    | 481 + [(605 - 481) x (35 - 20) / (40 - 20)]                                                                                                                                                                             | 574                                 |  |
|                       | $t_c = 30 \text{ °C}$<br>$t_c = 40 \text{ °C}$                                                                                                            | 605                                                                                             | 612                                                                               |                    | 376 + [(612 - 376) x (35 - 20) / (40 - 20)]                                                                                                                                                                             | 553                                 |  |
|                       |                                                                                                                                                           |                                                                                                 |                                                                                   |                    |                                                                                                                                                                                                                         | t - 5°C                             |  |
|                       |                                                                                                                                                           |                                                                                                 |                                                                                   |                    | 574 +[(553 - 574) x (-5 - 0) / (-10 - 0)]                                                                                                                                                                               | 450                                 |  |

 $k_{vs}$  theoretical = 205 kW / 450 = 0.46 m<sup>3</sup>/h

Valve MVS661.25-0.4N is suitable, since: 0.46 m<sup>3</sup>/h / 0.4 m<sup>3</sup>/h x 100 % = 115 % (> 50 %)

Capacity control

a) Refrigerant valve MVS661..N for capacity control of a dry expansion evaporator.



Suction pressure and temperature are monitored with a mechanical capacity controller and reinjection valve.

- Typical control range 0...100 %
- Energy-efficient operation with low loads
- Ideal control of temperature and dehumidification

b) Refrigerant valve MVS661..N for capacity control of a chiller.



• Typical control range 10...100 %

- Energy-efficient operation with low loads
- Allows wide adjustment of condensing and evaporating temperatures
- Ideal for use with plate heat exchangers
- Very high degree of frost protection

Note

A larger valve may be required for low-load operation than is needed for full load conditions. To ensure that the selected valve will not be too small for low loads, sizing should take account of both possibilities.

| Correction | table | KE |
|------------|-------|----|
| - ·        |       |    |

Expansion valve

|                                |     |     | R7  | '17      |     |     |   |                                | R22   |     |     |             |     |     |
|--------------------------------|-----|-----|-----|----------|-----|-----|---|--------------------------------|-------|-----|-----|-------------|-----|-----|
| t <sub>c</sub> ∖t₀             | -40 | -30 | -20 | -10      | 0   | 10  |   | t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30 | -20 | -10         | 0   | 10  |
| 00                             | 324 | 265 | 124 |          |     |     |   | 00                             | 82    | 68  | 37  |             |     |     |
| 20                             | 481 | 488 | 494 | 481      | 376 | 124 |   | 20                             | 101   | 104 | 107 | 105         | 81  | 18  |
| 40                             | 581 | 590 | 598 | 605      | 612 | 618 |   | 40                             | 108   | 111 | 114 | 118         | 120 | 123 |
| 60                             | 662 | 673 | 683 | 693      | 701 | 708 |   | 60                             | 104   | 108 | 112 | 116         | 119 | 122 |
| R744                           |     |     |     |          |     |     |   |                                | R13   | 34a |     |             |     |     |
| t <sub>c</sub> ∖t₀             | -40 | -30 | -20 | -10      | 0   | 10  |   | t <sub>c</sub> ∖t₀             | -40   | -30 | -20 | -10         | 0   | 10  |
| -20                            | 226 | 149 |     |          |     |     |   | 00                             | 27    |     |     |             |     |     |
| 00                             | 262 | 264 | 241 | 166      |     |     |   | 20                             | 71    | 74  | 77  | 66          | 43  |     |
| 20                             | 245 | 247 | 247 | 246      | 213 |     |   | 40                             | 74    | 78  | 81  | 85          | 89  | 92  |
|                                |     |     |     |          |     |     | • | 60                             | 67    | 72  | 76  | 81          | 85  | 89  |
|                                |     |     | DA  | 10.4     |     |     |   |                                |       |     | DA  | <b>14 A</b> |     |     |
| + \ +                          | 40  | 20  | 20  | 10       | 0   | 10  |   | + \ +                          | 40    | 20  | 20  | 10          | 0   | 10  |
|                                | -40 | -30 | -20 | -10      | 0   | 10  |   |                                | -40   | -30 | -20 | -10         | 0   | 10  |
| 00                             | 73  | 09  | 50  | 00       | 74  | 25  |   | 00                             | 31    | 00  | 05  | 70          | 40  |     |
| 20                             | 71  | 81  | 85  | 88       | 74  | 35  |   | 20                             | 80    | 83  | 85  | 72          | 40  | 100 |
| 40                             | 71  | 75  | 80  | 84<br>05 | 00  | 91  |   | 40                             | 87    | 90  | 94  | 97          | 101 | 102 |
| 60                             | 50  | 55  | 60  | 60       | 69  | 74  |   | 60                             | 80    | 89  | 94  | 98          | 102 | 106 |
|                                |     |     | R40 | )7A      |     |     |   |                                | R404A |     |     |             |     |     |
| t <sub>c</sub> ∖t <sub>o</sub> | -40 | -30 | -20 | -10      | 0   | 10  |   | t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30 | -20 | -10         | 0   | 10  |
| 00                             | 79  | 67  | 40  |          |     |     |   | 00                             | 69    | 63  | 44  |             |     |     |
| 20                             | 91  | 95  | 98  | 102      | 82  | 30  |   | 20                             | 70    | 74  | 78  | 81          | 68  | 30  |
| 40                             | 89  | 94  | 98  | 102      | 106 | 110 |   | 40                             | 61    | 65  | 70  | 74          | 78  | 81  |
| 60                             | 72  | 77  | 82  | 87       | 92  | 96  |   | 60                             | 36    | 41  | 46  | 51          | 55  | 59  |
|                                |     |     | R40 | )7C      |     |     |   |                                |       |     | R40 | )7B         |     |     |
| t <sub>c</sub> ∖t₀             | -40 | -30 | -20 | -10      | 0   | 10  |   | t <sub>c</sub> ∖t₀             | -40   | -30 | -20 | -10         | 0   | 10  |
| 00                             | 79  | 65  | 31  |          |     |     |   | 00                             | 72    | 66  | 45  |             |     |     |
| 20                             | 98  | 101 | 105 | 108      | 85  | 21  |   | 20                             | 77    | 80  | 84  | 88          | 75  | 34  |
| 40                             | 100 | 104 | 109 | 113      | 117 | 121 |   | 40                             | 69    | 74  | 78  | 83          | 87  | 91  |
| 60                             | 87  | 93  | 98  | 103      | 108 | 113 |   | 60                             | 46    | 51  | 56  | 61          | 66  | 70  |

|                                | R507   |         |     |                       |    |    |  |  |  |
|--------------------------------|--------|---------|-----|-----------------------|----|----|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40    | -30     | -20 | -10                   | 0  | 10 |  |  |  |
| 00                             | 72     | 66      | 47  |                       |    |    |  |  |  |
| 20                             | 78     | 81      | 83  | 86                    | 71 | 33 |  |  |  |
| 40                             | 74     | 78      | 81  | 84                    | 87 | 90 |  |  |  |
| 60                             | 53     | 57      | 61  | 64                    | 68 | 71 |  |  |  |
| With                           | superh | eat = 6 | Κ   | With subcooling = 2 K |    |    |  |  |  |

|                    | R410A    |         |         |          |       |     |  |  |  |
|--------------------|----------|---------|---------|----------|-------|-----|--|--|--|
| t <sub>c</sub> ∖t₀ | -40      | -30     | -20     | -10      | 0     | 10  |  |  |  |
| 00                 | 116      | 117     | 91      | 12       |       |     |  |  |  |
| 20                 | 125      | 130     | 133     | 137      | 120   | 69  |  |  |  |
| 40                 | 119      | 124     | 129     | 133      | 137   | 140 |  |  |  |
| 60                 | 90       | 96      | 101     | 106      | 110   | 114 |  |  |  |
| Δ                  | o upstre | am of e | evapora | tor = 1. | 6 bar |     |  |  |  |

 $\Delta p$  condenser = 0.3 bar  $\Delta p$  evaporator = 0.3 bar

#### Use of the MVS661..N as a hot-gas valve

The control valve throttles the capacity of a compressor stage. The hot gas passes directly to the evaporator, thus permitting capacity control in the range from 100 % down to approximately 0 %.

#### Indirect hot-gas bypass application



Suitable for use in large refrigeration systems in air conditioning plant, to prevent unacceptable temperature fluctuations between the compressor stages.

#### **Application example**

With low loads, the evaporating and condensing pressures can fluctuate depending on the type of pressure control. In such cases, evaporating pressure increases and condensing pressure decreases. Due to the reduction in differential pressure across the fully open valve, the volumetric flow rate will drop - the valve is undersized. This is why the effective pressures must be taken into account when sizing the valve for low loads.

Refrigerant R507; 3 compressor stages;  $Q_0 = 75 \text{ kW}$ ;  $t_o = 4 \text{ °C}$ ;  $t_c = 40 \text{ °C}$ Part load Q<sub>0</sub> per stage = 28 kW; t<sub>o</sub> = 4 °C; t<sub>c</sub> = 23 °C

| KH R507                       | t <sub>o</sub> = 0 °C | t <sub>o</sub> = 10 °C | Interpolation at                               | t <sub>c</sub> = 23 °C |
|-------------------------------|-----------------------|------------------------|------------------------------------------------|------------------------|
| t <sub>c</sub> = 20 °C        | 14,4                  | 9,0                    | 14,4 + [(22,4 - 14,4) x (23 - 20) / (40 - 20)] | 15,6                   |
| <i>t</i> <sub>c</sub> = 23 °C | 15,6                  | 11,0                   |                                                |                        |
| <i>t<sub>c</sub></i> = 40 °C  | 22,4                  | 22,0                   | 9,0 + [(22,0 - 9,0) x (23 - 20) / (40 - 20)]   | 11,0                   |

| Interpolation at                            | t <sub>o</sub> = 4 °C |
|---------------------------------------------|-----------------------|
| 15,6 + [(11,0 - 15,6) x (4 - 0) / (10 - 0)] | 13.8                  |

 $k_{vs}$  theoretical = 28 kW / 13,8 = 2,03 m<sup>3</sup>/h

Valve MVS661.25-2.5N is suitable, since: 2.03 m<sup>3</sup>/h / 2.5 m<sup>3</sup>/h x 100 % = 81 % (> 50 %)

#### **Direct hot-gas bypass** application

The control valve throttles the capacity of one compressor stage. The gas is fed to the suction side of the compressor and then cooled using a reinjection valve. Capacity control ranges from 100 % down to approximately 10 %.



Suitable for large refrigeration systems on air conditioning applications with several compressors or compressor stages, and where the evaporator and compressor are some distance apart (attention must be paid to the oil return).

#### **Correction table KH**

Hot-gas valve

|                                | R717 |     |     |     |     |     |  |  |  |
|--------------------------------|------|-----|-----|-----|-----|-----|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40  | -30 | -20 | -10 | 0   | 10  |  |  |  |
| 00                             | 20   | 19  | 14  |     |     |     |  |  |  |
| 20                             | 38   | 38  | 38  | 38  | 35  | 19  |  |  |  |
| 40                             | 67   | 66  | 65  | 64  | 64  | 63  |  |  |  |
| 60                             | 110  | 107 | 105 | 103 | 102 | 100 |  |  |  |

|                                |      | R744 |      |      |      |    |  |  |  |
|--------------------------------|------|------|------|------|------|----|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40  | -30  | -20  | -10  | 0    | 10 |  |  |  |
| -20                            | 38,1 | 30,5 |      |      |      |    |  |  |  |
| 00                             | 60,9 | 59,8 | 58,1 | 47,1 |      |    |  |  |  |
| 20                             | 87,3 | 84,9 | 82,5 | 80,2 | 76,1 |    |  |  |  |

|                                |      | R22  |      |      |      |      |  |  |  |  |
|--------------------------------|------|------|------|------|------|------|--|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40  | -30  | -20  | -10  | 0    | 10   |  |  |  |  |
| 00                             | 8,9  | 8,4  | 6,3  |      |      |      |  |  |  |  |
| 20                             | 15,3 | 15,1 | 14,8 | 14,6 | 13,2 | 6,5  |  |  |  |  |
| 40                             | 24,2 | 23,7 | 23,2 | 22,8 | 22,4 | 22,1 |  |  |  |  |
| 60                             | 35,7 | 34,7 | 33,8 | 33,0 | 32,3 | 31,7 |  |  |  |  |

|                    |      | R134a |      |      |      |      |  |  |  |  |
|--------------------|------|-------|------|------|------|------|--|--|--|--|
| t <sub>c</sub> ∖t₀ | -40  | -30   | -20  | -10  | 0    | 10   |  |  |  |  |
| 00                 | 4,5  |       |      |      |      |      |  |  |  |  |
| 20                 | 9,8  | 9,6   | 9,5  | 9,2  | 7,4  |      |  |  |  |  |
| 40                 | 15,9 | 15,6  | 15,3 | 15,1 | 14,9 | 14,7 |  |  |  |  |
| 60                 | 23,8 | 23,2  | 22,7 | 22,3 | 21,9 | 21,6 |  |  |  |  |

|                                | R402A |      |      |      |      |      |  |  |  |
|--------------------------------|-------|------|------|------|------|------|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30  | -20  | -10  | 0    | 10   |  |  |  |
| 00                             | 9,7   | 9,5  | 8,3  |      |      |      |  |  |  |
| 20                             | 15,9  | 15,7 | 15,4 | 15,2 | 14,5 | 9,3  |  |  |  |
| 40                             | 23,7  | 23,2 | 22,7 | 22,4 | 22,0 | 21,7 |  |  |  |
| 60                             | 31,5  | 30,7 | 29,9 | 29,2 | 28,7 | 28,1 |  |  |  |

|                                |      | R407A |      |      |      |      |  |  |  |  |
|--------------------------------|------|-------|------|------|------|------|--|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40  | -30   | -20  | -10  | 0    | 10   |  |  |  |  |
| 00                             | 8,9  | 8,6   | 6,7  |      |      |      |  |  |  |  |
| 20                             | 15,7 | 15,4  | 15,2 | 15,0 | 14,1 | 8,0  |  |  |  |  |
| 40                             | 24,9 | 24,4  | 23,9 | 23,5 | 23,1 | 22,8 |  |  |  |  |
| 60                             | 35,9 | 34,9  | 34,0 | 33,2 | 32,6 | 32,0 |  |  |  |  |

|                     |      | R407C |      |      |      |      |  |  |  |  |
|---------------------|------|-------|------|------|------|------|--|--|--|--|
| $t_c \setminus t_o$ | -40  | -30   | -20  | -10  | 0    | 10   |  |  |  |  |
| 00                  | 8,6  | 8,1   | 5,9  |      |      |      |  |  |  |  |
| 20                  | 15,3 | 15,0  | 14,8 | 14,6 | 13,6 | 7,0  |  |  |  |  |
| 40                  | 24,7 | 24,2  | 23,7 | 23,3 | 22,9 | 22,6 |  |  |  |  |
| 60                  | 36,3 | 35,3  | 34,4 | 33,6 | 33,0 | 32,4 |  |  |  |  |

|                         | R507 |      |      |      |      |      |  |  |
|-------------------------|------|------|------|------|------|------|--|--|
| $t_{c} \setminus t_{o}$ | -40  | -30  | -20  | -10  | 0    | 10   |  |  |
| 00                      | 9,8  | 9,5  | 8,1  |      |      |      |  |  |
| 20                      | 16,1 | 15,8 | 15,5 | 15,3 | 14,4 | 9,0  |  |  |
| 40                      | 24,5 | 23,8 | 23,3 | 22,8 | 22,4 | 22,0 |  |  |
| 60                      | 33,1 | 31,8 | 30,7 | 29,8 | 29,0 | 28,3 |  |  |

| t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30  | -20  | -10  | 0    | 10   |  |  |
|--------------------------------|-------|------|------|------|------|------|--|--|
| 00                             | 4,7   |      |      |      |      |      |  |  |
| 20                             | 10,2  | 10,0 | 9,9  | 9,5  | 7,6  |      |  |  |
| 40                             | 16,9  | 16,6 | 16,2 | 16,0 | 15,8 | 15,6 |  |  |
| 60                             | 25,9  | 25,2 | 24,6 | 24,1 | 23,7 | 23,3 |  |  |
|                                |       |      |      |      |      |      |  |  |
|                                | R404A |      |      |      |      |      |  |  |

R401A

|                                | R404A |      |      |      |      |      |  |
|--------------------------------|-------|------|------|------|------|------|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30  | -20  | -10  | 0    | 10   |  |
| 00                             | 9,4   | 9,2  | 7,8  |      |      |      |  |
| 20                             | 15,2  | 15,0 | 14,8 | 14,6 | 13,9 | 8,6  |  |
| 40                             | 22,3  | 21,8 | 21,5 | 21,1 | 20,9 | 20,6 |  |
| 60                             | 28,8  | 28,0 | 27,4 | 26,8 | 26,4 | 25,9 |  |
|                                |       |      |      |      |      |      |  |

|                                | R407B |      |      |      |      |      |  |  |  |
|--------------------------------|-------|------|------|------|------|------|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30  | -20  | -10  | 0    | 10   |  |  |  |
| 00                             | 9,0   | 8,8  | 7,4  |      |      |      |  |  |  |
| 20                             | 15,3  | 15,1 | 14,8 | 14,7 | 14,0 | 8,8  |  |  |  |
| 40                             | 23,3  | 22,8 | 22,4 | 22,0 | 21,7 | 21,5 |  |  |  |
| 60                             | 31,6  | 30,7 | 30,0 | 29,3 | 28,8 | 28,3 |  |  |  |

|                                | R410A |      |      |      |      |      |  |  |  |  |
|--------------------------------|-------|------|------|------|------|------|--|--|--|--|
| t <sub>c</sub> ∖t <sub>o</sub> | -40   | -30  | -20  | -10  | 0    | 10   |  |  |  |  |
| 00                             | 14,5  | 14,3 | 13,2 | 6,2  |      |      |  |  |  |  |
| 20                             | 24,2  | 23,7 | 23,3 | 23,0 | 22,1 | 15,9 |  |  |  |  |
| 40                             | 36,8  | 35,9 | 35,1 | 34,4 | 33,7 | 33,1 |  |  |  |  |
| 60                             | 50,0  | 48,5 | 47,2 | 46,0 | 44,9 | 43,8 |  |  |  |  |

With superheat = 6 K ٠

With subcooling = 2 K

 $\Delta p$  upstream of evaporator = 1.6 bar

 $\Delta p$  condenser = 0.3 bar •

 $\Delta p$  evaporator = 0.3 bar



Typical control range 50...100 %. Minimum stroke limit control: To ensure optimum cooling of the compressor, either a capacity controller must be provided for the compressor, or a minimum stroke must be set via the valve electronics.

The minimum stroke can be limited to a maximum of 80 %. At zero load, the minimum stroke must be sufficient to ensure that the minimum gas velocity in the suction line is > 0.7 m/s and that the compressor is adequately cooled.

As the control valve closes, the evaporating temperature rises and the air-cooling effect decreases continuously. The electronic control system provides demand-based cooling without unwanted dehumidification and costly retreatment of the air.

The pressure at the compressor inlet falls and the power consumption of the compressor is reduced. The energy savings to be anticipated with low loads can be determined from the compressor selection chart (power consumption at minimum permissible suction pressure). Compressor energy savings of up to 40 % can be achieved.

The recommended differential pressure  $\Delta p_{V100}$  across the fully open control valve is between 0.15 <  $\Delta p_{V100}$  < 0.5 bar.

## Application exampleRefrigerant R134A; $Q_0 = 9,5 \text{ kW}$ ; $t_o = 4 \text{ °C}$ ; $t_c = 40 \text{ °C}$ ;<br/>Differential pressure across MVS661..N: $\Delta p_{V100} = 0,25$ bar

In this application example,  $t_o$ ,  $t_c$  and  $\Delta p_{V100}$  are to be interpolated.

| <b>KS</b> R134a | t <sub>o</sub> = 0 °C | t <sub>o</sub> = 10 °C |
|-----------------|-----------------------|------------------------|
| 0,15 / 20       | 2.2                   | 2.7                    |
| 0,15 / 50       | 1.7                   | 2.1                    |
| 0,45 / 20       | 3.6                   | 4.5                    |
| 0,45 / 50       | 2.7                   | 3.4                    |

| t <sub>o</sub> = 4 °C   | t <sub>c</sub> = 20 °C | t <sub>c</sub> = 50 °C |
|-------------------------|------------------------|------------------------|
| $\Delta p_{v100}$ 0,15  | 2.4                    | 1.9                    |
| Δp <sub>v100</sub> 0,45 | 4.0                    | 3.0                    |

∆p<sub>v100</sub>

t<sub>o</sub> = 40 °C

| Interpolation at                         | t <sub>o</sub> = 4 °C |
|------------------------------------------|-----------------------|
| 2,2 + [(2,7 - 2,2) x (4 - 0) / (10 - 0)] | 2,4                   |
| 1,7 + [(2,1 - 1,7) x (4 - 0) / (10 - 0)] | 1,9                   |
| 3,6 + [(4,5 - 3,6) x (4 - 0) / (10 - 0)] | 4,0                   |
| 2,7 + [(3,4 - 2,7) x (4 - 0) / (10 - 0)] | 3,0                   |

| Interpolation at                            | t <sub>c</sub> = 40 °C |
|---------------------------------------------|------------------------|
| 2,4 + [(1,9 - 2,4) x (40 - 20) / (50 - 20)] | 2,1                    |
| 4,0 + [(3,0 - 4,0) x (40 - 20) / (50 - 20)] | 3,3                    |

| 0.15 | Δp <sub>v100</sub> 0.45 | Interpolation at                                    |
|------|-------------------------|-----------------------------------------------------|
| 1    | 3.3                     | 2,1 + [(3,3 - 2,1) x (0,25 - 0,15) / (0,45 - 0,15)] |

ant valve.

 $k_{vs}$  theoretical = 9,5 kW / 2,5 = 3,8 m<sup>3</sup>/h

2.'

Valve MVS661.25-6.3N is suitable, since 3.8 m<sup>3</sup>/h / 6.3 m<sup>3</sup>/h x 100 % = 60 % (> 50 %) It is recommended that the  $k_{vs}$  value be set to 63 % = 4 m<sup>3</sup>/h



Typical control range 10...100 %. The capacity controller ensures that the compressor is adequately cooled, making it unnecessary to set a minimum stroke in the refriger-

**Correction table KS** Suction throttle valve  $\Delta p_{v100} 0,25$ 

2,5

| tc                                  |     | R717 |     |     |      |      |  |
|-------------------------------------|-----|------|-----|-----|------|------|--|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30  | -20 | -10 | 0    | 10   |  |
| 0.15 / 20                           | 2.7 | 3.7  | 4.8 | 6.0 | 7.3  | 8.8  |  |
| 0.15 / 50                           | 2.3 | 3.2  | 4.2 | 5.2 | 6.4  | 7.8  |  |
| 0.45 / 20                           | 3.2 | 5.2  | 7.4 | 9.7 | 12.1 | 14.8 |  |
| 0.45 / 50                           | 2.8 | 4.6  | 6.5 | 8.5 | 10.7 | 13.1 |  |

| tc                                  |     | R152A |     |     |     |     |
|-------------------------------------|-----|-------|-----|-----|-----|-----|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30   | -20 | -10 | 0   | 10  |
| 0.15 / 20                           | 0,9 | 1,3   | 1,7 | 2,2 | 2,7 | 3,3 |
| 0.15 / 50                           | 0,7 | 1,0   | 1,4 | 1,7 | 2,2 | 2,7 |
| 0.45 / 20                           | 1,0 | 1,5   | 2,4 | 3,3 | 4,3 | 5,3 |
| 0.45 / 50                           | 0,7 | 1,2   | 1,9 | 2,6 | 3,5 | 4,4 |

| tc                                  |     |     | R   | 22  |     |     |
|-------------------------------------|-----|-----|-----|-----|-----|-----|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30 | -20 | -10 | 0   | 10  |
| 0.15 / 20                           | 1,2 | 1,5 | 1,9 | 2,4 | 2,9 | 3,4 |
| 0.15 / 50                           | 0,9 | 1,2 | 1,5 | 1,9 | 2,3 | 2,7 |
| 0.45 / 20                           | 1,5 | 2,3 | 3,0 | 3,9 | 4,8 | 5,7 |
| 0.45 / 50                           | 1,2 | 1,8 | 2,4 | 3,0 | 3,8 | 4,6 |

| t <sub>c</sub>                  |     |     | R1  | 34a |     |     |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| $\Delta p_{v100} \setminus t_o$ | -40 | -30 | -20 | -10 | 0   | 10  |
| 0.15 / 20                       | 0,7 | 1,0 | 1,4 | 1,8 | 2,2 | 2,7 |
| 0.15 / 50                       | 0,5 | 0,7 | 1,0 | 1,3 | 1,7 | 2,1 |
| 0.45 / 20                       | 0,7 | 1,2 | 1,9 | 2,7 | 3,6 | 4,5 |
| 0.45 / 50                       | 0,5 | 0,9 | 1,4 | 2,0 | 2,7 | 3,4 |

| t <sub>c</sub>                  |     | R402A |     |     |     |     |
|---------------------------------|-----|-------|-----|-----|-----|-----|
| $\Delta p_{v100} \setminus t_o$ | -40 | -30   | -20 | -10 | 0   | 10  |
| 0.15 / 20                       | 1,1 | 1,4   | 1,8 | 2,2 | 2,7 | 3,3 |
| 0.15 / 50                       | 0,7 | 0,9   | 1,2 | 1,5 | 1,8 | 2,3 |
| 0.45 / 20                       | 1,5 | 2,2   | 2,9 | 3,7 | 4,6 | 5,6 |
| 0.45 / 50                       | 0,9 | 1,4   | 1,9 | 2,4 | 3,1 | 3,8 |

| tc                              | R407A |     |     |     |     |     |
|---------------------------------|-------|-----|-----|-----|-----|-----|
| $\Delta p_{v100} \setminus t_o$ | -40   | -30 | -20 | -10 | 0   | 10  |
| 0.15 / 20                       | 1,0   | 1,4 | 1,8 | 2,3 | 2,9 | 3,5 |
| 0.15 / 50                       | 0,7   | 1,0 | 1,3 | 1,6 | 2,1 | 2,6 |
| 0.45 / 20                       | 1,3   | 2,0 | 2,9 | 3,8 | 4,7 | 5,9 |
| 0.45 / 50                       | 0,9   | 1,4 | 2,0 | 2,7 | 3,4 | 4,3 |

| t <sub>c</sub>                  |     | R401A |     |     |     |     |
|---------------------------------|-----|-------|-----|-----|-----|-----|
| $\Delta p_{v100} \setminus t_o$ | -40 | -30   | -20 | -10 | 0   | 10  |
| 0.15 / 20                       | 0,8 | 1,1   | 1,5 | 1,9 | 2,3 | 2,9 |
| 0.15 / 50                       | 0,6 | 0,8   | 1,1 | 1,5 | 1,8 | 2,3 |
| 0.45 / 20                       | 0,8 | 1,3   | 2,1 | 2,9 | 3,7 | 4,7 |
| 0.45 / 50                       | 0,6 | 1,0   | 1,6 | 2,3 | 3,0 | 3,7 |

| tc                                  |     |     | R40 | )4A |     |     |
|-------------------------------------|-----|-----|-----|-----|-----|-----|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30 | -20 | -10 | 0   | 10  |
| 0.15 / 20                           | 1,0 | 1,3 | 1,7 | 2,2 | 2,7 | 3,3 |
| 0.15 / 50                           | 0,6 | 0,8 | 1,1 | 1,4 | 1,7 | 2,1 |
| 0.45 / 20                           | 1,4 | 2,1 | 2,8 | 3,6 | 4,5 | 5,5 |
| 0.45 / 50                           | 0,8 | 1,2 | 1,7 | 2,3 | 2,9 | 3,6 |

| t <sub>c</sub>                      |     | R407C |     |     |     |     |
|-------------------------------------|-----|-------|-----|-----|-----|-----|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30   | -20 | -10 | 0   | 10  |
| 0.15 / 20                           | 1,0 | 1,4   | 1,8 | 2,3 | 2,9 | 3,5 |
| 0.15 / 50                           | 0,7 | 1,0   | 1,3 | 1,7 | 2,1 | 2,6 |
| 0.45 / 20                           | 1,3 | 2,0   | 2,8 | 3,8 | 4,8 | 5,9 |
| 0.45 / 50                           | 0,9 | 1,4   | 2,1 | 2,8 | 3,5 | 4,4 |

| t <sub>c</sub>                      |     | R407B |     |     |     |     |  |
|-------------------------------------|-----|-------|-----|-----|-----|-----|--|
| ∆p <sub>v100</sub> \ t <sub>o</sub> | -40 | -30   | -20 | -10 | 0   | 10  |  |
| 0.15 / 20                           | 1,0 | 1,3   | 1,7 | 2,2 | 2,7 | 3,3 |  |
| 0.15 / 50                           | 0,6 | 0,8   | 1,1 | 1,4 | 1,8 | 2,2 |  |
| 0.45 / 20                           | 1,3 | 2,0   | 2,7 | 3,5 | 4,5 | 5,5 |  |
| 0.45 / 50                           | 0,8 | 1,2   | 1,7 | 2,3 | 3,0 | 3,8 |  |

| t <sub>c</sub>                  |     | R507 |     |     |     |     |  |
|---------------------------------|-----|------|-----|-----|-----|-----|--|
| $\Delta p_{v100} \setminus t_o$ | -40 | -30  | -20 | -10 | 0   | 10  |  |
| 0.15 / 20                       | 1.1 | 1.4  | 1.8 | 2.3 | 2.7 | 3.3 |  |
| 0.15 / 50                       | 0.7 | 1.0  | 1.3 | 1.6 | 1.9 | 2.4 |  |
| 0.45 / 20                       | 1.6 | 2.2  | 2.9 | 3.7 | 4.6 | 5.6 |  |
| 0.45 / 50                       | 1.1 | 1.5  | 2.0 | 2.6 | 3.2 | 4.0 |  |

| t <sub>c</sub>                  |     |     | R4  | 10A |     |     |
|---------------------------------|-----|-----|-----|-----|-----|-----|
| $\Delta p_{v100} \setminus t_o$ | -40 | -30 | -20 | -10 | 0   | 10  |
| 0.15 / 20                       | 1,5 | 2,0 | 2,5 | 3,0 | 3,6 | 4,4 |
| 0.15 / 50                       | 1,0 | 1,3 | 1,7 | 2,1 | 2,6 | 3,1 |
| 0.45 / 20                       | 2,3 | 3,1 | 4,0 | 5,0 | 6,1 | 7,4 |
| 0.45 / 50                       | 1,6 | 2,1 | 2,8 | 3,5 | 4,4 | 5,3 |

With superheat = 6 K V
 Δp condenser = 0.3 bar Δ

With subcooling = 2 K  $\Delta p$  evaporator = 0.3 bar

 $\Delta p$  upstream of evaporator = 1.6 bar

#### **Revision numbers**

| Product number | Valid from rev. no. |
|----------------|---------------------|
| MVS661.25-016N | А                   |
| MVS661.25-0.4N | A                   |
| MVS661.25-1.0N | А                   |
| MVS661.25-2.5N | А                   |
| MVS661.25-6.3N | A                   |

© 2011 Siemens Switzerland Ltd