
MCO 305 Command Reference

1 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Contents

 How to Read this Command Reference.....................................3
 How to Read this Command Reference ..3
 Symbols and Conventions ...4
 Abbreviations ..5
 Definitions ..5

 Command Reference ..7

 Appendix ..135
 What’s New in the Update Version starting with MCO 5.00? 135
 Technical Reference.. 139
 Illustrations... 147
 Index ... 150

Copyright © Danfoss A/S, 2010

Trademarks VLT is a registered Danfoss trademark.

 Hiperface® is a registered trademark of the Sick Stegmann GmbH, Max Stegmann GmbH Antriebstechnik-

Elektronik.

 Microsoft, Windows 2000, and Windows XP are either registered trademarks or trademarks of the Microsoft

Corporation in the USA and other countries.

MCO 305 Command Reference

3 MG.34.R1.02 – VLT® is a registered Danfoss trademark

How to Read this Command Reference

 How to Read this Command Reference
This Command Reference completes the MCO 305 Design Guide with the with the detailed description of all
commands. Please read also the Operating Instructions, in order to be able to work with the system safely
and professionally, particularly observe the hints and cautionary remarks.

Chapter How to Read this Command Reference
informs you about the symbols, abbreviations, and
definitions used in this manual.

Page divider for ‘How to Read this Command

Reference’.

Chapter Command Reference provides a detailed
description of all commands including syntax, para-
meters, as well as program samples.

Page divider for ‘How to Program’.

Chapter Appendix gives a quick review of what
has changed since previous releases in “What’s
new?”. Experienced users will find detailed informa-
tion in the technical reference material for example
the “Array Structure of CAM Profiles”. Plus, the
manual ends with an index.

Page divider for ‘Appendix’.

The Online Help provides in Chapter Program Samples almost 50 program samples which you can use to
familiarize yourself with the program or copy directly into your program.

MCO 305 Command Reference
__ How to Read this Command Reference __

4 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 Available Literature for FC 300, MCO 305, and MCT 10 Motion Control Tool

− The MCO 305 Operating Instructions provide the necessary information for built-in, set-up, and optimize
the controller.

− The MCO 305 Design Guide entails all technical information about the option board and customer design
and applications.

− This MCO 305 Command Reference completes the MCO 305 Design Guide with the detailed description of
all commands.

− The VLT® AutomationDrive FC 300 Operating Instructions provide the necessary information for getting
the drive up and running.

− The VLT® AutomationDrive FC 300 Design Guide entails all technical information about the drive and
customer design and applications.

− The VLT® AutomationDrive FC 300 MCT 10 Operating Instructions provide information for installation
and use of the software on a PC.

Danfoss Drives technical literature is also available online at www.danfoss.com/drives.

 Symbols and Conventions
Symbols used in this manual:

NB!:
Indicates something to be noted by the reader.

Indicates a general warning.

Conventions

The information in this manual follows the system and uses the typographical features described below to
the greatest extent possible:

Menus and Functions

Menus and functions are printed italics, for example: Controller → Parameters.

Commands and Parameters

Commands and parameter names are written in capitals, for example: AXEND and KPROP; Parameters are
printed in italics, for example: Proportional factor.

Parameter Options

Values for use to select the parameter options are written in brackets, e.g. [3].

Keys

The names of keys and function keys are printed in brackets, for example the control key [Ctrl] key, or just
[Ctrl], the [Esc] key or the [F1] key.

MCO 305 Command Reference
__ How to Read this Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 5

 Abbreviations

 Ampere, Milliampere A, mA

 Control word CTW

 Digital Signal Processor DSP

 Frequency Converter FC

 Local Control Panel LCP

 Least significant bit LSB

 Main actual value MAV

 Motion Control Option MCO

 Motion Control Tool MCT

 Minute min

 Most significant bit MSB

 Main Reference MRV

 Master Unit MU

 Digital output switching to high side. NPN

 Parameter par.

 Position Control Loop PID

 Digital output switching to low side. PNP

 Pulses per Revolution PPR

 Quad-counts qc

 Reference REF

 Revolutions per Minute RPM

 Second, Millisecond s, ms

 Sample time st

 Status word STW

 User Unit UU

 Volts V

 Definitions

 MLONG

An upper or lower limit for many parameters:
 -MLONG = -1,073,741,824
 MLONG = 1,073,741,823

 Quad-counts

Incremental encoders: 4 quad-counts correspond to
one sensor unit.
Absolute encoders: 1:1 (1 qc correspond to one
sensor unit).

Through edge detection, a quadrupling of the incre-
ments is produced by both tracks (A/B) of the
incremental encoder. This improves the resolution.

Derivation of quad counts

MCO 305 Command Reference
__ How to Read this Command Reference __

6 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 User Units
The units for the drive or the slave and the master, respectively, can be defined by the user in any way
desired so that the user can work with meaningful measurements.

Starting with MCO 5.00 the factors SYNCFACTM / SYNCFACTS, POSFACT_Z / POSFACT_N are no longer
limited to small values

Internally, it is act as follows: Whenever a value must be multiplied by the gear factor (i.e. master incre-
ments per ms), at first it is looked if a multiplication will result in an overflow. If so, a factor (64 bit) is used
which consists of

 SYNCFACTS/SYNCFACTM to multiply the delta_master.

If no overflow occurs, first it is multiplied by SYNCFACTS and then divided by SYNCFACTM.

Concerning the error we are dealing with, this means:

Normal case

Multiplying by SYNCFACTS has no error, but dividing by SYNCFACTM means that the result may be wrong by
1/2³² . That means that (worst case) such an error occurs every ms, i.e. that after 1193 hours (49,71 days)
we made an error of 1 qc (Slave).

Big factors

In that case, the used factor (SYNCFACTS/SYNCFACTM) itself could be wrong by 1/2³² . This means that in
the worst case an error of delta_master * 1/2³² occurs every ms. Assume that we have an encoder with
1000 counts (4000 qc) per revolution. Assume further, that we drive with 2000 rpm, i.e. we have a velocity
of 133 qc/ms. This means we make an error of 133 * 1/2³² per ms. From this follows that in worst case
(maximum error every ms always in same direction) we could have an error of 1 qc after 9 hours.

This should not be relevant in most applications.

User Units [UU]

All path information in motion commands are made in user units and are converted to quad-counts
internally. These also have an effect on all commands for the positioning: e.g. APOS.

The user can also select meaningful units for the CAM control in order to describe the curve for the master
and the slave, for example 1/100 mm, or 1/10 degrees in applications where a revolution is being observed.

In the CAM control, the maximum run distance of the slave or the slave cycle length are indicated in User
Units UU (qc).

The unit can be standardized with a factor. This factor is a fraction which consists of a numerator and
denominator:

Denomintor Unit User
Numerator Unit User

 11-32 par.
 12-32 par.

 UU UnitUser 1 =

par. 32-12 User Unit Numerator POSFACT_Z
par. 32-11 User Unit Denominator POSFACT_N

Scaling determines how many quad-counts make up a user unit. For example, if it is 50375/1000, then one
UU corresponds to exactly 50.375 qc.

NB!:
When user units are transferred into qc, then they get truncated. When qc are transferred into
user units, then they get rounded.

Master Units [MU]

A factor (fraction) is used for the conversion into qc, as with the user unit:

Slave Factor ationSynchroniz
Master Factor ationSynchroniz

 1133 par.
 1033 par.

 MU UnitMaster 1
−

−
=

par. 33-10 Synchronization Factor Master SYNCFACTM
par. 33-11 Synchronization Factor Slave SYNCFACTS

MCO 305 Command Reference

7 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Command Reference

In the following section all commands are listed in alphabetical order and described in detail with syntax
examples as well as short program samples. Please read also the section “Basics” in chapter “How to
Progam” in the MCO 305 Design Guide.

MCO 305 Command Reference
__ Command Reference __

8 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ACC

Summary Setting acceleration for motion commands.

Syntax ACC a

Parameter a = acceleration

Description The ACC command defines the acceleration for the next motion command (speed
control, synchronizing or positioning). The value will remain valid until a new
acceleration value is set, using the ACC command. The value is related to the
parameters 32-81 Shortest Ramp and 32-80 Maximum Velocity as well as 32-83
Velocity Resolution.

NB!:
If acceleration has not been defined previous to a motion command, then the
maximum acceleration will be the setting of par. 32-85 Default Acceleration.

NB!:
If the MCO 305 is used to control FC 300, then the ramps should always set via the
option card and not in the FC 300. The FC 300 ramps must always be set to
minimum.

Command Group REL, ABS

Cross Index DEC, VEL, POSA, POSR,
Parameters: 32-81 Shortest Ramp, 32-80 Maximum Velocity, 32-83 Velocity
Resolution

Syntax Example ACC 10 /* Acceleration 10 */

Example minimum acceleration time: 1000 ms
maximum velocity: 1500 RPM (25 Rev./s)
velocity resolution: 100

RAMPMIN
par. 32-81

Velocity
[RPM]

VELMAX
par. 32-80

t
[ms]

1
7
5
M

D
4
5
0

RAMPMIN
par. 32-81

Program Sample ACC_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 9

 APOS

Summary Reads actual position

Syntax res = APOS

Return Value res = absolute actual position related to the actual zero point

 All path information in motion commands are made in user units and are converted
to quad-counts internally. (See also Numerator and Denominator, parameters 32-12
and 32-11.)

The user unit (UU) corresponds in standard setting to the number of Quad counts.

1
11-32 par.

 12-32 par.
Parameter ==

Denomintor Unit User
Numerator Unit User

Description The APOS command can query the absolute position of the axis related to the
actual zero point.

If a temporary zero point which has been set via SETORIGIN exists, then the
position value is relative to this zero point.

NB!:
The read out using APOS may or may not be equal to the target position or
commanded position. The error or deviation may be due to the mechanics involved
and truncated decimal values in the User Units.

 APOS is affected by the parameters 32-12 and 32-11, and by commands
SETORIGIN p, DEFORIGIN.

 Example:

 POSA 2000
 PRINT "Actual Position Reached", APOS
Output:
Actual Position Reached 2000
(depending on PID settings a small deviation
may occur)

Initial

0

After Positioning

0

 Example with SETORIGIN

 SETORIGIN 2000
 POSA 2000
 PRINT "Actual Position”, APOS
Output:
Actual Position 2000

Initial

2000

After execution

0

 Program on execution sets the original 2000 qc as the origin and then moves the
drive by 2000 qc more for positioning command.

Command Group SYS

Cross Index CPOS, DEFORIGIN, SETORIGIN, POSA, POSR,
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator

Syntax Example PRINT APOS /* display the actual position of axis on the PC */

Program Sample APOS_01.M, GOSUB_01.M, MOTOR_01.M

MCO 305 Command Reference
__ Command Reference __

10 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 APOSDIFF

Summary Overflow handling of incremental encoders in applications.

Syntax res = APOSDIFF oldpos

Return Value oldpos = APOS at a previous time

Description Returns difference between APOS and oldpos (res = APOS – oldpos) in UU.

 This command simplifies overflow handling of incremental encoders in applications.
If, for example, the user stores an actual position in his program and wants to
calculate the difference at a later time, then he normally has to account for overflow
of the position. Instead this command can be used; see below.

Internally those routines look if the difference is bigger than POS_LIMIT
(0x3FFFFFFF). If so then it is assumed that an overflow happened and it is handled
correctly.

NB!:
This will not solve the problem of overflowing if the application uses user units.

Portability Command is available starting with MCO 5.00

Command Group SYS

Cross Index APOS

Syntax Example oldpos = APOS
…..
diff = APOSDIFF oldpos
 // this function returns the difference between APOS and oldpos in user units
 // handling an overflow if necessary (diff = APOS – oldpos)

 AVEL

Summary Queries actual velocity of axis.

Syntax res = AVEL

Return Value res = actual velocity of axis in UU/s, the value is signed

Description This function returns the actual velocity of the axis in User Units per second. The
accuracy of the values depends on the duration of the measurement (averaging).
The standard setting is 20 ms, but this can be changed by the user with the
_GETVEL command. It is sufficient to call up the command once in order to work
with another measuring period from then on. Thus, the command:

 var = _GETVEL 100

sets the duration of the measurement to 100 ms, so that you have a considerably
better resolution of the speed with AVEL and MAVEL, however, in condertrast, quick
changes are reported with a delay of a maximum of 100 ms.

Command Group SYS

Cross Index MAVEL, APOS, _GETVEL

Syntax Example PRINT AVEL /* queries actual velocity of axis and display on the PC */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 11

 AXEND

Summary AXEND reads info on status of program execution.

Syntax res = AXEND

Return Value res = axis status with the following meaning:

 Value Bit

 128 7 1 = Motor is reset, i.e. it is ready to start and is controlling
again, e.g. after ERRCLR, MOTOR STOP, MOTOR ON

 64 6 1 = axis controller is OFF, motor is off

 4 - 5 not in use

 8 3 1 = motor is at STOP status

 4 Bit 2 1 = speed mode is active

 2 Bit 1 1 = positioning procedure is active

 1 Bit 0 1 = target position reached; motor is not in motion

Description The AXEND command gives the actual status of the axis or the status of the
program execution.

This means for example that you can enquire when the “position is reached” and a
positioning command (POSA, POSR) has actually been completed. When Bit 1 is set
at [0] the positioning process is complete and the position reached.

If, however, the positioning command has been interrupted with MOTOR STOP and
continued later with CONTINUE, then the following bits would be set at [1]:

the Bit 0 for “motor is at a standstill”
the Bit 1 for “positioning process active”
the Bit 3 for “motor is at STOP status”
the Bit 6 for “axis controller switched off”

The AXEND command is especially suitable for determining whether or not a
movement in the NOWAIT ON condition is terminated.

Command Group SYS

Cross Index WAITAX, STAT, NOWAIT

Syntax Example NOWAIT ON // do not wait until position is reached
POSA 100000
WHILE (AXEND&2) DO
// as long as the positioning process is active, repeat loop
 IF IN1 THEN // if input 01 is set
 VEL 100 // increase velocity
 POSA 100000
 WAIT IN1 OFF // wait until input (key) is off
 ENDIF
ENDWHILE // position reached

Syntax Example IF (AXEND&64) THEN
 OUT 1 1 // set output 01, when axis controller is switched off
ELSE
 OUT 1 0
ENDIF

Program Sample AXEND_01.M

MCO 305 Command Reference
__ Command Reference __

12 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 CANDEL

Summary Deletes all or single CAN objects.

Syntax CANDEL objno

Parameter objno = object number, which is returned during the definition of the object

 = –1 deletes all objects (except the standard objects)

Description With the CANDEL command CAN objects which were previously created with
DEFCANIN or DEFCANOUT can be deleted.

Standard objects, for the buffered input/output (OUTMSG or INMSG) cannot be
deleted with this command. These cannot be created during initialization.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Syntax Example CANDEL –1 /* all CAN objects are deleted */

 CANIN

Summary Reads an object via the CAN bus.

Syntax status = CANIN objno time-out control varhi varlo

Parameter objno = object number which is returned during the definition of the object.

time-out = –1 does not wait for data
= 0 waits until data arrives
> 0 waits for the data in time-out [ms]

control = 0 Checks whether the new data has arrived. The new data is
subsequently copied to the variables.

 = 1 Sends a remote frame and waits for data in dependence on
time-out

varhi = Bytes 0 to 3 of the CAN object data

varlo = Bytes 4 to 7 of the CAN object data

Return Value Status = –1 no data has arrived

 = 0 o.k.

Description The CANIN command copies the data (if present) of the CAN object 'objno' to the
variables 'varhi' and 'varlo'. If 'control = 1', then the data is requested first.

 It is possible to gather all Transmit-PDOs of digital input modules or CAN-Drive
status by using only one CAN telegram. This feature is restricted to the Master-bus.
This feature must use the CAN-Object 15 internally which reduces the number of
usable CAN objects on the master bus by 1.

To enable this feature, the command CANINI 999 must be used

This command enables reception of TxPDOs by interrupt and stores every received
PDO in a buffer with a depth of 1. This works for all IDs from 1 to 127. That means
if any IO-module in that range sends a TxPDO it is captured and stored it in the
buffer. The next TxPDO from the same module of course overwrites the first one. To
read out of the buffer, the following command can be used:

 result = CANIN (id * 100) timeout 0 hi lo

This command returns -1 if no new information was in the buffer, otherwise it
returns 0. You can use the timeout normally (-1 does not wait, 0 waits for ever for
new information, n waits n ms).

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 13

 The result is returned in hi and lo, but we already arrange byte ordering so that
they can be used as if you read them with PDO[]. That means if lo contains a 32-bit
number then you can use it right away without reordering the bytes.

Whenever you use a new CANINI command or you start a new program, this
feature is disabled.

Using this feature of course loads the processor if there is heavy PDO traffic on the
BUS.

NB!:
It is not recommend this feature be used together with other CAN IO commands on
the same bus. This may lead to unwanted results. If you use, for example, a
CANopen digital I/O module with ID 3 on the master bus with an IN (3*256+1) or
with CANINI 3 999, then this will result in a situation where the IN command will
work but you would not get the PDOs with the above described CANIN command.
This is because two CAN objects will exist with the same ID. In that case, the
processor only serves the first one. As mentioned above, we use object 15 for
reception of all PDOs, which is the last one.

Portability Optional command and extended commands CANINI and CANIN to use only one
CAN telegram are available starting with MCO>=5.00.

Command Group CAN

Cross Index CANOUT, CANDEL, DEFCANOUT, DEFCANIN, CANINI

Syntax Example MSG = 0
temp = 0 /* Define variables */
rx1 = DEFCANIN 42 8 /* a RX object is created */
STAT = CANIN rx1 1000 0 MSG temp /* wait 1s for data */

Program Sample CAN_sample.M, CANIN.M

MCO 305 Command Reference
__ Command Reference __

14 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 CANINI

Summary Initializes the necessary objects (PDOs) for data exchange of CANopen nodes, or
enables extended CANINI, CANIN function.

Syntax CANINI no, no, no, …,

CANINI 999

CANINI no, no, 999, no
is also possible, but only in the same command. The next new command would
delete the previous parameters.

Parameter no = guard * (busoffset * 1000 + id)

 guard = –1, +1 (without / with guarding)

busoffset = 100000 , 0 (slave bus, master bus)

Samples for CANINI values:

 0 Deletes any objects, which were formerly assigned using the
CANINI command.

 999 enables reception of all TPDO1s (0x181-0x1FF) by interrupt and
stores every received PDO in a buffer with a depth of 1.

 1…127 CAN I/O with bus ID 1…127 with guarding

 -1…–127 CAN I/O with bus ID 1…127 without guarding

Description The CANINI command establishes contact with CAN devices and creates permanent
corresponding CAN objects in order to be able to communicate (using PDO) with
these devices. The advantage is that these input modules can also be used for
interrupt functions without permanent bus load due to status polling.

If you do not need any interrupts, then you can accelerate the processing of the IN
and INB commands with CANINI, since the corresponding devices send these
information autonomously every time a change of state happens.

It is strongly recommended to “guard” (i.e. CANINI > 0) any CAN devices, which
are initialized using CANINI. That is the only way to make sure, that the device is
still present and takes part in bus communication. If one device is no longer
present, then an error 188 is triggered by the missing feedback of the GUARD
object. An error routine, defined with ON ERROR can react to such an error state.

When CANINI is executed for drives, the corresponding PDO is created and also the
SYNC object if necessary. If guarding is started, a guarding telegram is sent every
20 ms to one device. If for example 4 devices are guarded, it takes 80 ms to check
each device once. No response within 100 ms indicates an error 188 (guarding
error).

A maximum of 16 modules can be stored internally.

 Every new CANINI command reinitializes all objects which were assigned before
with CANINI, i.e. guarding (GUARD) is stopped and also SYNC telegrams. This is
not true, if there are permanent objects from par. 32-00 or 32-30 Incremental
Signal Type. These objects will still remain, like the internal automatically created
PDOs corresponding to the definition of parameters 32-00 and 32-30 Incremental
Signal Type.

The CANINI command starts all modules synchronously, i.e. for every module a
NMT0 message is sent to set the module on the status “operational”.

If a CANINI fails, it is possible to read the SYSVAR 67 [0x01220244] GuardErrorId
to find out which id caused the problem.

Portability Command is available starting with MCO 5.00.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 15

NB!:
If the CANINI command is used on controls with multiple separated CAN bus
circuits, GUARD and SYNC functionality is only supported on the so-called slave
bus.

Command Group CAN

Cross Index IN, INAD, INB, OUT, OUTB, OUTDA,
par. 32-00 and par. 32-00 Incremental Signal Types

Syntax Example CANINI 1,2,3,4 /* Initialize the CAN modules with pre-set node number */

Program Sample CAN_sample.M

 CANOUT

Summary Sends message with an internal number.

Syntax CANOUT no valhi vallo

Parameter valhi Bytes 0 to 3 of the CAN object data
vallo Bytes 4 to 7 of the CAN object data

Description A CAN message is sent with this command from a sending object defined by
DEFCANOUT. The values hi and lo are 4 bytes long

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index CANIN, CANDEL, DEFCANIN, DEFCANOUT

Syntax Example valhi = 21
vallo = 41
tx1 = DEFCANOUT 500 8
/* TX object is defined with Id=500 and data length = 8 bytes */
CANOUT tx1 valhi vallo /* a CAN message is sent */

Program Sample CANOUT.M

MCO 305 Command Reference
__ Command Reference __

16 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 COMOPTGET

Summary Reads a Communication option telegram

Syntax COMOPTGET no array

Parameter array = the name of an array which must be at least the size of no

 no = number of words to be read

Description COMOPTGET reads from the Communication option buffer the no words and writes
them in the array ‘array’, starting with the first element.

Portability Option

Communication
Option Function

Parameters: Read and write parameters are not affected by the option board.

NB!:
The parameters 9-15 and 9-16 have additionally to be set with the correct values.

Control data: The function of Control word (CTW) and Main Reference (MRV) depends on the
setting of par. 33-82 Drive Status Monitoring; Status words (STW) and Main actual
value (MAV) is always active:

 Parameter 33-82 Parameter 33-82

 “Enable MCO 305” “Disable MCO 305”

CTW/MRV Disabled Active

STW/MAV Active Active

Process data: PCD’s 1 – 4 of PPO type 2/ 4 and PCD’s 1 – 8 of PPO type 5 are not assigned a
parameter number by parameters 9-15 and 9-16 but are used as a free data area
which can be used in a APOSS program.

The command COMOPTGET is copying the data received on the communication
option into an array, where each array element contains one data word (16 bit).

The command COMOPTSEND is copying data from an array, where each array
element contains one data work (16 bit) into the send buffer on the communication
option, from where it is send via the network to the master.

Command Group Communication option

Cross Index COMOPTSEND

Program Sample COM_OPT

 COMOPTSEND

Summary Writes in the Communication option buffer

Syntax COMOPTSEND no array

Parameter array = the name of an array which must be at least the size of ‘no’

 no = number of words to be sent

Description COMOPTSEND writes in the Communication option buffer. In doing so the first ‘no’
values are sent from the ‘array’.

Portability With built-in Communication option.

Communication
Option Function

See command COMOPTGET

Command Group Communication option

Cross Index COMOPTGET

Program Sample COM_OPT

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 17

 CONTINUE

Summary Continues positioning from point of interrupted motion

Syntax CONTINUE

Description By using CONTINUE, positioning and speed motion commands which have been
aborted via the MOTOR STOP command or an error condition or stopped via MOTOR
OFF can be resumed.

The CONTINUE command can be used especially in an error subroutine in
connection with the ERRCLR command, to enable the correct continuation of a
motion procedure following an error abort.

NB!:
However CONTINUE does not continue interrupted synchronization commands.

Command Group CON

Cross Index MOTOR STOP, ERRCLR, ON ERROR GOSUB

Syntax Example CONTINUE /* continue interrupted motion procedure */

Program Sample MSTOP_01.M

 CPOS

Summary Reads the actual command position of an axis

Syntax res = CPOS

Return Value res = Absolute commanded position in User Units (UU) related to the actual zero
point

Description The CPOS command queries the actual commanded position of the axis related to
the actual zero point. The commanded position is understood to be the temporary
set position which is re-calculated every millisecond by the positioning control
during a positioning procedure or a movement in rotation mode.

The command position can be queried independently of the operating condition
(position control during standstill, positioning process, speed control or
synchronization).

NB!:
If a set and active temporary zero point (set via SETORIGIN) exists, then the
position value is relative to this zero point.

Command Group SYS

Cross Index APOS, DEFORIGIN, SETORIGIN, POSA, POSR,
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator

Syntax Example PRINT CPOS /* actual command position of axis */

Program Sample CPOS_01.M, GOSUB_01.M

MCO 305 Command Reference
__ Command Reference __

18 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 CPOSDIFF

Summary Overflow handling of incremental encoders in applications.

Syntax res = CPOSDIFF oldpos

Parameter oldpos = CPOS at a previous time

Return Value Returns difference between CPOS and oldpos (res = CPOS – oldpos) in UU.

Description This command simplifies overflow handling of incremental encoders in applications.
If, for example, the user stores an actual position in his program and wants to
calculate the difference at a later time, then he normally has to account for over-
flow of the position. Instead this command can be used; see below.

Internally those routines look if the difference is bigger than POS_LIMIT
(0x3FFFFFFF). If so then it is assumed that an overflow happened and it is handled
correctly.

This will not solve the problem of overflowing if the application uses user units.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index CPOS

Syntax Example oldpos = CPOS
…..
diff = CPOSDIFF x(1) oldpos
 // this function returns the difference between CPOS and oldpos in user units
 // handling an overflow if necessary (diff = CPOS – oldpos)

 CSTART

Summary Starts the speed mode

Syntax CSTART

Description The CSTART command is starting the drive in speed control mode.
Acceleration/deceleration, as well as the speed should be set via the ACC, DEC and
CVEL commands prior to starting.

CSTART does not contain the command MOTOR ON which turns on the motor
control. When using CSTART an explicit calling up of MOTOR ON is necessary after
previous use of MOTOR OFF.

NB!:
If no speed value has been defined via CVEL before the beginning of CSTART, then
the default velocity 0 is used – this means that the motor will not rotate, but the
PID controller is active.

All CVEL commands following the start of speed mode will be carried out
immediately, i.e. a corresponding speed change will take place immediately, with
the defined acceleration or deceleration (ACC/DEC).

Command Group ROT

Cross Index ACC, DEC, CVEL, CSTOP

Syntax Example CSTART /* rpm mode start */

Program Sample CMODE_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 19

 CSTOP

Summary Stops the drive in speed mode

Syntax CSTOP

Description Via the CSTOP command, the speed mode is terminated and the positioning mode
is started, whereby a still rotating axis is stopped the deceleration defined with DEC
and the motor is held in the stop position.

NB!:
A CSTOP command carried out in the positioning mode can also cause an abrupt
termination of the positioning procedure.

Command Group ROT

Cross Index ACC, DEC, CVEL, CSTART

Syntax Example CSTOP /* rpm mode stop */

Program Sample CMODE_01.M

MCO 305 Command Reference
__ Command Reference __

20 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 CURVEPOS

Summary Retrieve slave curve position that corresponds to the current master position of
the curve.

Syntax res = CURVEPOS

Return Value res = Slave position in CAM units (UU) absolute to the current zero point.

Description CURVEPOS returns the slave value which corresponds to the actual curve master
position.

The position can be retrieved independently of the operating status (position
control at standstill, positioning procedure, velocity control or synchronization).

 CMASTERCPOS (SYSVAR) and CURVEPOS are now updated even if SYNCC is no
longer active. The update of these values starts after a SETCURVE command (if
par. 33-23 Start Behavior for Sync is < 2000) or after SYNCC and the first master
marker (if par. 33-23 = 2000).

After the SYNCC command is stopped, we continue to update these values if Start
Behavior for Sync. < 2000.

NB!:
The position is only defined if a SETCURVE has been set before.

NB!:
If a temporary zero point exists which has been set with SETORIGIN and is active,
the position value will refer to this zero point.

NB!:
DEFMCPOS and DEFMORIGIN can still modify this position.

Command Group CAM

Cross Index APOS, DEFORIGIN, SETORIGIN, POSA, POSR, DEFMCPOS,
Parameters: 33-10 Syncfactor Master, 33-11 Syncfactor Slave

Syntax Example PRINT CURVEPOS // print actual slave position of the curve

Fix points of a curve:

Master Slave

Sample

0
500
700
1000

0
500
300
1200

 Say the current master position is 800. Then the CURVEPOS returns the corres-

ponding slave position of 450.

Case 1: Current Master Position is 800 and current slave position is 200.
CURVEPOS will return the value 450.

Case 2: Current Master Position is 800 and current slave position is 700.
CURVEPOS will return the value 450.

Hence CURVEPOS is independent of the slave position.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 21

 CVEL

Summary sets velocity for speed controlled motor movements

Syntax CVEL v

Parameter v = velocity value (negative value for reversing)

Resolution Velocity 83-32 par.

Velocity Maximum 80-32 par.
*V [RPM] Velocity Command =

Description The velocity for the next speed controlled motor movement is set with the CVEL
command. The value remains valid until a further CVEL sets a new velocity.

The velocity value to be given will be related to the parameters 32-80 Maximum
Velocity and 32-83 Velocity Resolution.

NB!:
CVEL commands which take place after CSTART will be carried out immediately i.e.
the velocity will be adapted via the ACC/DEC set acceleration or deceleration to the
new value of CVEL.

If a velocity has not been defined before the start of speed control mode (CSTART),
then the default velocity is 0, i.e. the motor will not turn, and a velocity input via
CVEL will start the movement in speed control mode.

Command Group ROT

Cross Index ACC, DEC, CSTART, CSTOP,
Parameter: 32-80 Maximum Velocity

Syntax Example CVEL 100

Program Sample CMODE_01.M

 DEC

Summary sets deceleration

Syntax DEC a

Parameter a = deceleration

Description The DEC command defines the deceleration for the next motion command (speed
control synchronization or positioning). This value will remain valid until a new
deceleration value is set with another DEC command. The value is related to the
parameters 32-81 Shortest Ramp and 32-80 Maximum Velocity as well as 32-83
Velocity Resolution.

NB!:
If deceleration is not defined previous to the positioning command then decele-
ration will be the setting of parameter 32-85 Default Acceleration.

NB!:
If you work with the MCO 305 then you should always set the ramps via the option
card and not in the FC 300. The FC ramps must always be set to minimum.

Command Group REL, ABS

Cross Index ACC, Parameters: 32-81 Shortest Ramp, 32-80 Maximum Velocity, 32-83 Velocity
Resolution

Syntax Example ACC 50 /* acceleration: 50, while braking 10 */
DEC 10

Example minimum acceleration time: 1000 ms
maximum velocity: 1500 RPM
velocity resolution: 100

MCO 305 Command Reference
__ Command Reference __

22 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 DEFCANIN

Summary Defines a receive object.

Syntax objno = DEFCANIN id dlen

Parameter id = CAN-identification number

dlen = data length of the object in bytes (max. 8 bytes)

Return Value objno

A positive value means that the object was successfully created. This value is an
internal number of the object and is used by other APOSS-CAN commands. A
negative value means an error has occurred.

Description This command defines an incoming communication object in the CAN-Controller.

This command can also be used with the offset for the slave bus (telegram ID
100000).

These objects can now be deleted one by one via the command CANDEL objno,
where objno is the number returned by DEFCANIN or DEFCANOUT.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Program Sample var1 = 0 /* declare variables */
var2 = 0
rx1= DEFCANIN 500 8

/* RX object with Id=500 and data length=8 bytes is defined */
CANIN rx1 0 0 var1 var /* a CAN message is read */

 DEFCANOUT

Summary Defines a transmit object in the CAN controller.

Syntax objno = DEFCANOUT id dlen

Parameter id = CAN-identification number

dlen = data length of the object in bytes (max. 8 bytes)

Return Value objno

A positive value means that an object was successfully created. This value is an
internal number of the object and is used by other APOSS-CAN commands. A
negative value indicates an error.

Description This command defines an object in the CAN-Controller. This object is an outgoing
object with a length of n bytes and the CAN identification of (id). Thus, objno is an
internal number of the object ld and is used by the CANOUT command.

This command can also be used with the offset for the slave bus (telegram ID 100000).

So it is possible to define messages for slave and master bus. These objects can
now be deleted one by one via the command CANDEL objno, where objno is the
number returned by DEFCANIN or DEFCANOUT.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index DEFCANIN, CANOUT, CANIN

Syntax Example no = DEFCANOUT 500 8
/* defines an object with ld=500 and length 8 bytes */
/* the function returns a 1 */
/* a message with ld=500 and a length of 8 bytes can now be sent */
/* with the command CANOUT 1 value1 value2 */

no = DEFCANOUT id len

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 23

 DEFCORIGIN

Summary Sets the command position as zero point.

Syntax DEFCORIGIN

Description DEFCORIGIN sets the command position as zero point. All absolute positioning
commands (POSA etc.) refers to this zero point from now on.

In doing so CPOS is set to zero and APOS is set in that way, that the difference is
remained.

Portability Command is available starting with MCO 5.00.

Command Group INI

Cross Index POSA, DEFORIGIN, CPOS

Syntax Example POSA 80000 /* absolute positioning */
DEFCORIGIN X(1) /* define command position as zero point */

 DEFMCPOS

Summary Define initial position of the master

Syntax DEFMCPOS p

Parameter p = position in Master Units (MU)

Description DEFMCPOS defines the initial position of the master (in MU) in the CAM-Mode and
thus the point where the curve begins as soon as the master pulses are being
counted.

Command Group CAM

Cross Index DEFMORIGIN, SETMORIGIN, SYNCC,
Parameter: par. 33-23 Start Behavior for Sync.

Syntax Example DEFMCPOS 1000 // Set internal MU counter to 1000

Sample DEFMCPOS positions Master’s current physical position to the master curve position
indicated irrespective of what the MAPOS is.

When a DEFMCPOS 500 is issued, master’s physical position is made as the position
500 of the curve.

When a DEFMCPOS 500 is issued, master’s physical position is made as the position
500 of the curve.

MCO 305 Command Reference
__ Command Reference __

24 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 DEFMORIGIN

Summary Set the current master position as the zero point for the master.

Syntax DEFMORIGIN

Description DEFMORIGIN defines the current master position as the zero point for the master.
The master position (MAPOS) refers to this zero point until a redefinition takes
place using DEFMORIGIN or SETMORIGIN.

NB!:
The command DEFMORIGIN can not be used with absolute encoders (see par. 32-
30 Incremental Signal Type).

Command Group INI

Cross Index MAPOS, SETMORIGIN

Syntax Example DEFMORIGIN /* Set current position as the zero point for the master */

 DEFORIGIN

Summary Sets the current position as zero point

Syntax DEFORIGIN

Description With the DEFORIGIN command the current position is set as the zero point. All
absolute positioning commands (POSA) then refer to this zero point.

The actual position reached in a positioning command is the Target position plus
some error which is not compensated automatically while using a DEFORIGIN.

NB!:
The command DEFMORIGIN can not be used with absolute encoders (see par. 32-
00 Incremental Signal Type).

Command Group INI

Cross Index POSA

Syntax Example POSA 80000 /* Absolute positioning */

 DEFORIGIN /* define actual position as zero point */

Sample POSA 2000
PRINT "Position before new origin", APOS
DEFORIGIN
PRINT "Position after defining new origin",
APOS
Output
Position before new origin 2000,
Position after defining new origin 0

Initial

0

After execution

0

(after DEFORIGIN)

Program Sample DORIG_01.M, ORIG_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 25

 DEFSYNCORIGIN

Summary Defines master-slave relation for the next SYNCP or SYNCM command, or
defines the start values for standard curves with SYNCC command.

Syntax DEFSYNCORIGIN mcpos spos

Parameter mcpos = master reference position in qc, or
master curve position in qc

spos = slave reference position, or

spos < SlaveCurveLenght = slave curve position

spos > SlaveCurveLength = the actual curve position has to be seen as the
correct position within the curve corresponding to the
master position mcpos

Description This command defines how much distance ahead or behind should the slave be in
relation to the master position. It allows defining the relation between master and
slave for the next SYNCP or SYNCM command. It sets the internal slave command
position (Mpcmd) to the slave value.

The master value is used for an internal MOVESYNCORIGIN. For that reason, a
MOVESYNCORIGN will be overwritten by this command. Both actions are done at
the moment, when the SYNC command is activated. So it is guaranteed, that
master and slave will be synchronized at the above master-slave position.

 With SYNCC the DEFSYNCORIGIN can be used to define the start values for
standard curves as follows:

Here, mcpos tells the controller that the actual master position (MAPOS)
corresponds to a master curve position of mcpos.

spos has two different meanings:

spos < SlaveCurveLenght = defines the actual position of the slave as the slave
curve position spos.

spos > Slave CurveLength = the actual curve position has to be seen as the correct
position within the curve corresponding to the master
position mcpos (spos itself does not have any
meaning, it just has to be greater than slave curve
length).

Example: Assuming that the curve is a straight line going from 0,0 to 2000,4000 in
terms of (master,slave).

Further assuming that the slave is at a position of 11000 qc and that the master has
an actual position of 15000 qc. To make it simple, let us assume that the gear
factors are 1 : 1.

If now a SETCURVE is done without any further commands, then the following would
happen. The controller tries to find out where the slave is located within a curve.
Therefore, it calculates the remainder of 11000 / 4000 which is 3000 and the
remainder of 15000 / 2000 which is 1000. That means the result would be that the
actual MCPOS (master curvepos) is 1000. So the corresponding slave curve position
should be 2000. But at the moment the slave is at a curve position of 3000 instead.
(The csstart position is the start position of the last curve, which would be 8000 in
our case). If this curve is started, the slave would try correct the position and move
to 2000.

If now the following command is used

 DEFSYNCORIGIN 500 100000

the following will happen:

MCO 305 Command Reference
__ Command Reference __

26 MG.34.R1.02 – VLT® is a registered Danfoss trademark

The actual master position is defined as the master curve position of 500.

And because 100000 is bigger than the slave curve length of 4000, the actual slave
position (of 11000 qc) equates to the slave curve position belonging to the master
curve position of 500 which is 1000. So csstart will be set to 10000. If now the
curve is started, it will be ok and just follow the curve when the master starts
moving.

 DEFSYNCORIGIN in conjunction with CU_GRAD curves (type 3)

In case of a CU_GRAD curve, the DEFSYNCORIGIN can be used to define the
absolute end position of the curve in qc. In that case, the curve is started
immediately and is calculated in such a manner that the end positions will be
reached at the end of the curve.

NB!:
To avoid degenerate polynomials, the distances must be in a correct relation. If you
start with velocity zero and want to end up with a velocity of 1 (slave has same
velocity as master), then the master distance should be less than two times the
slave distance. Otherwise, the polynomial will have extremes within the interval.
This is more difficult to predict in other cases (start velocity not 0 or end velocity not
1). Therefore, you can check the PG_FLAG_CURVE_ERR to see if the last SETCURVE
produced a curve with extremes (see STAT). Then you can read out the SYSVAR
PFG_LASTERROR (see SDO dictionary) to decide what it was.

Portability Starting with MCO 5.00 start values for curves can be defined.

Command Group SYN

Cross Index MOVESYNCORIGIN

Sample Here when the master is in 2000 qc the slave should be in 4000 qc, i.e., slave
should be ahead of master by 2000 qc.

Also when the master is in 3000 qc the slave should be in 5000 qc.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 27

 DELAY

Summary Time delay

Syntax DELAY t

Parameter t = time delay in milliseconds (maximum MLONG)

Description The DELAY command leads to a defined program delay. This parameter gives the
delay time in milliseconds.

If an interrupt occurs during the delay time, then following the processing of the
interrupt procedure, the programmed delay will take place after the correct
inclusion of the interrupt time. Thus, the DELAY command gives a constant delay
time, independent of whether various interrupts have to be processed during the
programmed delay time.

If the interrupt requires more processing time than is available for the delay, then
the interruption procedure will be carried out to the end, before the command
following the DELAY instruction is commenced.

Command Group CON

Cross Index WAITT, WAITI, WAITAX

Syntax Example DELAY 1000 /* 1 second delay */

Program Sample DELAY_01.M

 DELETE ARRAYS

Summary Delete all arrays in the RAM.

Syntax DELETE ARRAYS

Description With DELETE ARRAYS you can delete all arrays in the RAM without also deleting the
parameters etc. This command has the same effect as the menu command
Controller → Reset → Arrays.

NB!:
If you then execute a SAVE ARRAYS, the arrays in the EPROM are also overwritten!

NB!:
If DELETE ARRAYS is carried out after a DIM assignment in the program, it is then
no longer possible to access the array elements.

NB!:
If a program contains a DELETE ARRAYS command, there are no more arrays in
the RAM after the program is exited.

Command Group INI

MCO 305 Command Reference
__ Command Reference __

28 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 DIM

Summary Definition of an array

Syntax DIM array [n]

Parameter array = name of the array
n = number of array elements

Description Via a DIM instruction at the commencement of the program, it is possible to
declare one or more arrays (= Variable fields).

Arrays are valid for all programs. If arrays are not yet available in the MCO 305
memory, then the arrays are allocated via the DIM instructions. Arrays which are
already available in the memory are checked to see if their size corresponds to the
current DIM commands. If differences are found, then an error registration is
made. If, additionally to the corresponding arrays, new arrays are declared, then
these must also be added at the end of the DIM command.

Each array element can later be accessed, similar to a variable, calculation results,
characters or other information can be stored.

An array element can be called up via the array name and an index. The indices
are admissible from 1 to the defined size in the DIM allocation.
An essential difference between variables and array elements consists in the fact that
arrays are stored in the non-volatile memory, and their contents are permanent even
when the power supply is switched off – insofar as it is saved with SAVEPROM or SAVE
ARRAYS.

In contrast to variables, arrays have a validity not only for one, but for all
programs in the VLT unit flow. The only condition necessary is that the arrays must
be accessible via a DIM command in the desired program which enables a data
exchange between several programs. It is of no importance whether or not the
array is identified with the same name in all the programs. What is important is the
order of the array definitions. This means, for example, that the first defined array
in all programs always refers to the first stored array in the memory, independent
of the array name.

NB!:
The DIM command must be the first instruction in a program, and must appear
before the subroutines. Indices from 1 to the defined size of the array are
permissible.

The array content will not be lost, even following switching off the power supply.

A defined array size is valid for all programs, and cannot be altered. Only the order of
the array definitions (not the names) determines which of the data-fields will be
accessed.

Array definitions can only be canceled via erasure of the entire memory.

Command Group CON

Syntax Example DIM xpos[100], ypos[100]
/* define array XPOS and YPOS each with 100 elements */

Program Sample DIM_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 29

 DISABLE … interrupts

Summary Locks the execution of interrupts.

Syntax DISABLE inttyp

NB!:
DISABLE cannot be called up during interrupt procedures. (The system
automatically switches back to enabled after an interrupt.)

Parameter inttyp = ALL
 CANMSG
 COMBIT
 INT
 KEYPRESSED
 PARAM
 PERIOD
 position interrupts:
 ON APOS, ON IPOS, ON MAPOS, ON MCPOS, ON MIPOS
 STATBIT
 TIME

NB!:
The execution of error handling ON ERROR can not be locked with DISABLE. The
error interrupt has the highest priority and it also interrupts other active interrupts.

Description DISABLE switches off all or explicitly specified interrupts – apart from ON ERROR.
If the function DISABLE … is used in the main program, it can prevent interrupts of
the corresponding type.

This is particularly useful if a variable, which is set in an interrupt procedure, is
used in the main program. To do this you should first switch off the corresponding
(or all) interrupts in the main program DISABLE … alter the variable and then
switch the corresponding (or all) interrupts back on with ENABLE …

NB!:
If an interrupt is disabled it still exist, but is not processed anymore (Exception:
DISABLE ALL).

The detection is still running in the background and the interrupt is captured in
case of a non (!) edge-sensitive or a message-oriented interrupt (ON PERIOD, ON
APOS, ON PARAM etc.). If the interrupt is ENABLEd again and there was a captured
(non edge-sensitive) interrupt before, this interrupt is processed immediately.

In case of edge-sensitive interrupts (e.g. ON INT, ON COMBIT, ON STATBIT), all
interrupts, which take place during the DISABLEd phase are not processed, even
not after switching on ENABLE again. These interrupts have no memory in case of
DISABLEd state. Edge-sensitive interrupts which take place after the anew
ENABLEing are still processed again.

NB!:
Exception: DISABLE ALL
In opposite to the selective disabling of edge-sensitive interrupts (e.g. DISABLE
INT) – these will be ignored and not executed after enabling – in case of DISABLE
ALL the request is stored (edge-sensitive interrupts too) and the interrupt are still
executed after enabling (ENABLE ALL)!

DISABLE ALL in combination with selective DISABLE

Please note, that an ENABLE ALL has no impact on simultaneous valid blockings
defined by selective DISABLE commands (e.g. DISABLE INT). Thus a selective
blocking must also be cleared by the corresponding selective ENABLE!

MCO 305 Command Reference
__ Command Reference __

30 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Interrupt handling within an Interrupt

During the execution of an interrupt subroutine at first a DISABLE ALL will auto-
matically be done internally. This blocks the execution of all other interrupts, but
keeps upcoming interrupt requests still in mind. At the end of the ‘current’ interrupt
subroutine an ENABLE ALL will be again executed automatically. With the comple-
tion of the ‘current’ interrupt the upcoming stored interrupts will be executed yet.
Therefore the execution of the commands DISABLE ALL and ENABLE ALL within an
interrupt is not necessary and not meaningful, too.

The selective blocking of single interrupts within an interrupt subroutine can be
necessary, depending on the application. Think of the following example: If the
execution of an interrupt should lock the request and execution of other interrupt
types, a selective DISABLE (e.g. DISABLE INT) can be done. In this case the
selective interrupt blockage must be cleared (e.g. ENABLE INT) by the application
program later on again. Typically this is done at the end of the current interrupt
subroutine and enables the execution of corresponding interrupt requests in future
again. All edge triggered interrupts, which were received between the correspon-
ding selective DISABLE and ENABLE, will be ignored and not executed any longer
(nor later). All interrupts, which were received before the selective blocking (e.g.
DISABLE INT) or after the new selective release (e.g. ENABLE INT) will be
processed after the completion of the “first“ interrupt.

Command Group INT

Cross Reference ON INT, ON CANMSG, ON COMBIT, ON KEYPRESSED, ON STATBIT, ON PARAM, ON
PERIOD, ON TIME, ENABLE .. Interrupts

Syntax Examples DISABLE ALL /* Switch off all interrupts */

 DISABLE STATBIT /* Switch off the interrupt for the status bit */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 31

 ENABLE ... interrupts

Summary Enables locked interrupts.
Syntax ENABLE inttyp

Parameter inttyp =
ALL
CANMSG
COMBIT
INT
KEYPRESSED
PARAM
PERIOD
position interrupts: ON APOS, ON IPOS, ON MAPOS, ON MCPOS, ON MIPOS
STATBIT
TIME

Description ENABLE switches all or explicitly specified interrupts on again.

NB!:
ENABLE cannot be called up during interrupt procedures. (The system automati-
cally switches back to enabled after an interrupt.)

NB!:
During the execution of an interrupt subroutine at first a DISABLE ALL and at the
end an ENABLE ALL will automatically be done internally. Therefore the execution
of the commands DISABLE ALL and ENABLE ALL within an interrupt is not
necessary and not meaningful, too.

NB!:
Please see the command DISABLE .. interrupts for more details about interrupt
blockings and how blocked interrupts are handled after the ENABLE command.

Command Group INT

Cross Reference ON INT, ON CANMSG, ON COMBIT, ON KEYPRESSED, ON STATBIT, ON PARAM, ON
PERIOD, ON TIME, DISABLE .. Interrupts

Syntax Examples ENABLE ALL /* Switch on all interrupts */

 ENABLE COMBIT /* Switch on the interrupt for the communication bit */

MCO 305 Command Reference
__ Command Reference __

32 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ENCPOSOFFS

Summary Syncs the incremental position counter with the absolute counter in the encoder.

Syntax result = ENCPOSOFFS offset

Parameter offset = Returns the difference between absolute and incremental position
(absolute – incremental)

Return values OK 0 The command was successful

TIMEOUT -1 No answer has been received within 300ms

BADFRAME -2 The received frame is not valid

OVERFLOW -4 Received more bytes than the receive buffer can take

Description The difference between the absolute encoder position and the incremental counter
is determined and returned.

For this, the incremental counter in the DSP is latched exactly at the moment where
also the Hiperface encoder latches the absolute position which it sends back over
RS485.

With this difference, the user e.g. can set the position within APOSS to the absolute
value with SETORIGIN.

You can also use the MENCPOSOFFS command in case the Hiperface encoder is
used as master signal instead of slave signal (see parameter 32-50).

Motor feedback:

The motor feedback signal is generated by the incremental signal.

Often, the Hiperface encoders will be used with a PM motor. For PM motors, it is
necessary to know how the absolute rotor position is. The rotor position relative to
the absolute encoder position must be determined once during the commissioning
of the system (or sometimes, it is also saved in the encoder). The offset will then
be saved in a control card parameter (Par. 1-41).

After a power cycle, the incremental signal (which is used for motor feedback) must
be synced to the absolute position again (see program sample).

Command Group SYS

Cross Reference MENCPOSOFFS

Program Sample MOTOR OFF

SET ENCODERTYPE 0 // no incremental encoder is connected

SET ENCODERABSTYPE 1 // Hiperface encoder

SET ENCODEABSRES 4096 // Hiperface resolution

DELAY 1000

pos = 0

RSTORIGIN

offset = 0

PRINT "apos before: ", apos

retval = ENCPOSOFFS offset

PRINT "encposoffs returned: ", retval, " offset is: ", offset

SETORIGIN -offset

PRINT "apos afterwards: ", apos

WHILE(1) DO

PRINT apos // print incremental position

DELAY 500

ENDWHILE

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 33

 ENCTGREAD

Summary Reads a RS485 telegram from the encoder.

Syntax result = ENCTGREAD array

Parameter array = The user array where the received payload data should be put.

Return values OK x (>0) TG has arrived with x bytes user data

ACTIVE 0 The transmission is still ongoing

TIMEOUT -1 No answer has been received within 300ms

BADFRAME -2 The received frame is not valid

OVERFLOW -4 Received more than the receive buffer can take

Description After a telegram has been sent with ENCTGWRITE, the answer can be polled by this
command. The return value will show if it has already arrived or if a timeout has
occurred.

You can also use the MENCTGREAD command in case the Hiperface encoder is used
as master signal instead of slave signal (see parameter 32-50)

Command Group SYS

Cross Reference MENCTGREAD, ENCTGWRITE

Program Sample // Example program to receive absolute position

DIM sendbuffer[20]

#define HIPER_READ_POS 0x42

SET ENCODERTYPE 0 // no incremental encoder is connected

SET ENCODERABSTYPE 1 // hiperface encoder

SET ENCODEABSRES 4096 // hiperface resolution

DELAY 1000

pos = 0

WHILE(1) DO

sendbuffer[1] = HIPER_READ_POS

retval = ENCTGWRITE 1 sendbuffer // send telegram

DELAY 1000

retval = ENCTGREAD sendbuffer // receive answer

 // check if correct amount of bytes has been received

IF(retval == 7) then // 0x40 0x42 pos0 pos1 pos2 pos3 crc

pos.b4 = sendbuffer[3]

pos.b3 = sendbuffer[4]

pos.b2 = sendbuffer[5]

pos.b1 = sendbuffer[6]

PRINT "Pos = ", pos

ELSE

PRINT "-------- Transmission error ------------: ", retval

PRINT "1: ", sendbuffer[1]

PRINT "2: ", sendbuffer[2]

PRINT "3: ", sendbuffer[3]

PRINT "4: ", sendbuffer[4]

EXIT

ENDIF

DELAY 500

ENDWHILE

MCO 305 Command Reference
__ Command Reference __

34 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ENCTGWRITE

Summary Sends a RS485 telegram to the encoder.

Syntax result = ENCTGWRITE length array

Parameter length = The number of bytes (in the user array) to be sent.

array = The user array containing the payload data to send to the encoder.

Return values OK 0 Telegram has been sent

BUSY -3 There is still another transmission ongoing and not timed out yet

Description This command will send a RS485 telegram to the encoder with the ID
“ENCODERID”. The user has to fill the payload data into an array before. The
command will then put this data into a regular RS485 frame and add CRC value to
it.

The command does not wait till the data has been sent or an answer is received, it
returns immediately.

The answer of the telegram has to be polled with ENCTGREAD

You can also use the MENCTGWRITE command in case the Hiperface encoder is
used as master signal instead of slave signal (see parameter 32-50).

Command Group SYS

Cross Reference ENCTGREAD, MENCTGWRITE

Program Sample See program sample ENCTGREAD command.

 ERRCLR

Summary Error cancellation

Syntax ERRCLR

 The ERRCLR command should only be used in a subroutine for error handling (see
ON ERROR GOSUB).

NB!:
ERRCLR contains the command MOTOR ON, which automatically turns on the
control again. (The motor is position controlled at the current position.)

Description An option card error can be cleared via the ERRCLR command. However, the cause
of the error must be eliminated first; otherwise the same error alarm will occur
again. If, in the meantime, another un-corrected error occurs, then only the first
error will be canceled.

ERRCLR also resets FC 300 alarms by means of Bit 7 of the control word.

Command Group INI, CON

Cross Index ON ERROR GOSUB, ERRNO, CONTINUE, MOTOR ON,
Warnings and Error Messages

Syntax Example ERRCLR /* erase actual error alarm */

Program Sample ERROR_01.M, IF_01.M, INDEX_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 35

 ERRNO

Summary System variable with the actual error code

Syntax res = ERRNO

Description ERRNO is a system variable which is available in all the programs, and contains the
momentary error code. All error codes are explained in the chapter
Troubleshooting.

If, at the time of inquiry no error has occurred, then ERRNO will contain a 0.

Portability Standard variable

Command Group SYS

Cross Index ON ERROR GOSUB, ERRCLR,
Warnings and Error Messages

Syntax Example PRINT ERRNO /* display actual error code */

Program Sample ERROR_01.M, IF_01.M, INDEX_01.M

 EXIT

Summary Premature program termination

Syntax EXIT

Description The EXIT command ends a program where active positioning procedures are being
carried out to the end.

The EXIT command is especially intended for use in an error treatment routine, and
permits an unplanned program termination in the case of an un-correctable error
occurrence.

After an abort with EXIT, programs marked with Autostart will start up again
automatically if
SET PRGPAR = -1.

NB!:
A program should only be terminated in the case of a serious error, e.g. when
reacting to a limit switch.

Command Group CON

Cross Index ON ERROR GOSUB, SET,
Parameter: 33-80 Activated Program Number PRGPAR, Autostart

Syntax Example EXIT /* Program termination */

Program Sample EXIT_01.M, ERROR_01.M

MCO 305 Command Reference
__ Command Reference __

36 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 GET

Summary Reads a parameter

Syntax res = GET par

Parameter par = parameter identification

Return Value res = parameter value

Description Reads the value of a parameter, a MCO 305 parameter, or an application para-
meter.

Parameters are addressed with a code, for example KPROP for the Proportional
Factor, or POSERR for the Tolerated Position Error. A complete list of the codes can
be found in the Parameter Reference.

Application parameters are addressed with a number of group 19-**. See also the
parameter reference for details.

Command Group PAR

Cross Index SET, GETVLT, SETVLT, LINKGPAR,
Parameter Reference

Syntax Example PRINT GET POSLIMIT /* Print-out positive positioning limit */
posdiff = GET POSERR /* Read actual setting tolerated position error */
PRINT GET I_FUNCTION_9_4 /* reads input 4 for abort */

Program Sample GETP_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 37

 GETVLT

Summary Reads a VLT parameter

Syntax res = GETVLT par

Parameter par = parameter number

Return Value res = parameter value

Description GETVLT reads parameters and return the corresponding value. Thus, with GETVLT
you have access to the operating data (e.g. motor current 1-24) or to the configu-
rations (e.g. max. reference par. 3-03) of the FC 300.

Since only integer values are transmitted, it is necessary to take the conversion
index into consideration when evaluating the return value.

Thus an LCP value of 50.0 Hz (par. 16-13 conversion index = –1) is equivalent to a
return value of 500.

The list of FC 300 parameters with their respective conversion index can be found
in the FC 300 Operating Instructions.

NB!:
Use GETVLTSUB to read parameters with index numbers, for example FC 300
parameter 5-40.

Command Group PAR

Cross Index SETVLT

Syntax Example PRINT GETVLT 413 /* reads par. 4-13 motor speed high limit */

 GETVLTSUB

Summary Reads a VLT parameter with index number

Syntax res = GETVLTSUB par indxno

Parameter par = parameter number

indxno = index number

Return Value res = parameter value

Description GETVLTSUB reads VLT parameters with index numbers, for example FC 300
parameter 5-40, and return the corresponding value.

Since only integer values are transmitted, it is necessary to take the conversion
index into consideration when evaluating the return value.

Thus an LCP value of 50.0 Hz (par. 16-13 conversion index = –1) is equivalent to a
return value of 500.

The list of FC 300 parameters with their respective conversion index can be found in
the FC 300 Operating Instructions.

Command Group PAR

Cross Index SETVLTSUB

Syntax Example PRINT GETVLTSUB 540 0
 // reads index 01 of the parameter 5-40 "Function Relay"

MCO 305 Command Reference
__ Command Reference __

38 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 GOSUB

Summary Calls a subroutine

Syntax GOSUB name

Parameter name = subroutine name

Description The GOSUB command will call up a subroutine, and the accompanying program will
be carried out.

The main program will be continued following the completion of the last subroutine
command (RETURN).

NB!:
The subroutine must be defined at the beginning or end of a program within the
SUBMAINPROG area.

Command Group CON

Cross Index SUBMAINPROG .. ENDPROG, SUBPROG .. RETURN, ON ERROR GOSUB .., ON INT n
GOSUB

Syntax Example GOSUB testup /* Call-up the subroutine testup */
 Command line
 Command line
SUBMAINPROG /* Subroutine testup must be defined */
SUBPROG testup
 Command line 1
 Command line n
RETURN
ENDPROG

Program Sample GOSUB_01.M, AXEND_01.M, INCL_01.M, STAT_01.M

 GOTO

Summary Jump to a program label

Syntax GOTO label

Parameter label = identification of program target position

Description The GOTO command enables an unconditional jump to the indicated program
position and the program processing at this position will be carried out.

The jumped-to position is identified with a label. A label can consist of one or more
characters and may not be identical to a variable name or a command word. A label
must also be unique, i.e. it may not be used for different program positions.

It is therefore possible to program a continuous loop via the GOTO command.

NB!:
The label for the program target position must be followed by a colon (:).

Command Group CON

Cross Index LOOP

Syntax Example endless: /* label to be jumped to */
 command line 1
 command line n
GOTO endless /* jump command to label endless */

Program Sample GOTO_01.M, EXIT_01.M, IF_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 39

 HOME

Summary Move to device zero point (reference switch) and set as the real zero point.

Syntax HOME

Description The HOME command is moving the drive to the machine reference switch, which
must be placed at the machine zero or reference position. Velocity and
acceleration/deceleration for HOME positioning is defined in the parameters 33-03
Velocity for Home Motion and 33-02 Ramp for Home Motion.

To achieve accurate positioning Velocity for Home Motion should not be higher than
10% of maximum velocity.

The sign of par. 33-03 Velocity for Home Motion determines the direction in which
the reference switch is searched.

When the HOME position is reached, this position will be defined as 0.

The reference switch can be approached in 4 different ways defined in par. 33-04
Behavior during Home Motion:

0 = Moves to reference switch, moves in opposite direction leaving the references
switch and stops at the next index pulse (encoder zero pulse or external
marker).

1 = Like 0 but without searching for the index pulse.

2 = Like 0 but leaving the switch without reversing the direction.

3 = Like 2 but without searching for the index pulse.

If HOME is aborted via an Interrupt, HOME will not be continued automatically at the
end of the interrupt routine function. Instead the program continues with the next
command. This makes it possible for HOME to also be aborted after an error.

NB!:
The system must be fitted with a reference switch, when possible with an encoder
with an index pulse.

NB!:
The HOME command will also be carried out to the end in the NOWAIT ON mode,
before other program processing will be begun.

Please note that ON PERIOD xx GOSUB xx must be disabled during homing.
E.g. ON PERIOD n GOSUB x and the resetting after homing is completed.

NB!:
The command HOME can not be used with absolute encoders (see par. 32-00
Incremental Signal Type).

Command Group INI

Cross Index INDEX, NOWAIT
Parameters: 33-03 Velocity for Home Motion, 33-02 Ramp for Home Motion, 33-00
Force HOME

Syntax Example HOME /* move to reference switch and index */

Program Sample HOME_01.M

MCO 305 Command Reference
__ Command Reference __

40 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 IF ..THEN .., ELSEIF .. THEN .. ELSE .. ENDIF

Summary Conditional single or multiple program branching.
(When the conditions are fulfilled, then . . . , else . . .)

Syntax IF condition THEN command
ELSEIF condition THEN command
ELSE command
ENDIF

Parameter condition = Branching criteria
command = one or more program commands

Description Conditional program branching can be realized with the IF..ENDIF construction.

When the conditions following IF or ELSEIF are fulfilled, then the commands
leading to the next ELSEIF, ELSE or ENDIF are carried out – and the program will
be continued after the ENDIF instruction.

When the conditions are not fulfilled, then the following ELSEIF branching will be
checked and, in as much as the conditions are fulfilled, the corresponding program
part will be carried out, and the program continued after ENDIF.

The branching conditions that are checked after IF or ELSEIF can be made up of
one or more comparison operations.

Any number of ELSEIF branching can occur within an IF...ENDIF construction –
however, only one ELSE instruction should be available. Following the ELSE
instruction is a program part that must be carried out, in as much as none of the
conditions are fulfilled.

The ELSEIF and ELSE instructions can, but do not have to be, contained within an
IF ENDIF construction.

NB!:
After a condition has been fulfilled, the appropriate program part will be carried out
and the program following the ENDIF instruction continued. Further conditions will
no longer be checked.

Command Group CON

Cross Index REPEA T .. UNTIL, WHILE . . ENDWHILE

Syntax Example /* simple branch */
IF (a == 1) THEN /* Variable a = 1, then */
 command line 1
 command line n
ENDIF
/* multiple branch */
IF (a == 1 AND b != 1) THEN
 command lines
ELSEIF (a == 2 AND b != 1) THEN
 command lines
ELSEIF (a == 3) THEN
 command lines
ELSE
 command lines
ENDIF

Program Sample IF_01.M, ERROR_01.M, EXIT_01.M, HOME_01.M, IN_01.M, …

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 41

 IN

Summary Reads status of digital input

Syntax res = IN n

Parameter n = input number
1 – 10 or 1 – 12 (option inputs)
18, 19, 27, 29, 32, 33

 or with CAN open I/O modules:
CAN-Bus + (Module-CAN-ID * 256) + input number (or input byte)

Return Value res = input status
0 = Low-level or undefined
1 = High-level

Description The status of a digital input can be read with the IN command. Depending on the
signal level, a 0 or 1 will be given.

The selection of the mode for input 11,12 is done by par. 33-60 IOMODE.

 The definition of a high or low level, as well as the input circuit, can be taken from
the “Operating Instructions”, as well as from the FC 300 manual.

The inputs 5 and 6 are also used as marker inputs for the master and slave
encoders.

 CAN modules which fulfill the CAN OPEN specifications can also be addressed with
the IN command via the corresponding number defined as follows:

 CAN-Bus + (Module-CAN-ID * 256) + input number (or input byte)

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules, but for the moment there are no objects there which are
ready to receive, for example for interrupt functions. In order to execute interrupt
functions you have to initialize the corresponding module with CANINI beforehand.

Portability The parameters to use CANopen are available starting with MCO 5.00.

Command Group I/O

Cross Index INB, OUT, OUTB, CANINI
Parameters: 33-60 Terminal X59/1 and X59/2 Mode, IOMODE,
33-50...59,61,62 Terminal X57/n Digital Inputs, I_FUNCTION_n

Syntax Example in4 = IN 4 /* store condition input 4 in variable in4 */
IF (IN 2) THEN /* if high level on terminal 2, set output 01 */
 OUT 1 1
ELSE
 OUT 1 0
ENDIF

Program Sample IN_01.M

MCO 305 Command Reference
__ Command Reference __

42 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 INAD

Summary Reads analog input or
process data objects (PDO) of CAN objects

Syntax res = INAD n

Parameter n = a) number of the analog input: 53,54

 b) with CAN applications: Module number * 256 + I/O number

Return Value res = analog value

a) Terminal 53/54: -1000 – 1000 = -10 V – 10 V
 Terminal 53/54: 0 – 10 V
 res = 0 – 100

b) The range of values depend on the analog input used.

Description The INAD command reads the value of the analog inputs.

CAN modules which fulfill the CAN open specifications can also be addressed with
the INAD command via the corresponding

 Module number * 256 + the I/O number.

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules.

NB!:
The CAN commands operate with the pre-defined PDOs of CAN-OPEN. Do not
change these default settings (minimum capability device), otherwise the CAN
commands will not operate anymore.

Portability The function Read PDO is available starting with MCO 5.00.

Command Group I/O

Cross Index CANINI, Operating Instructions MCO 305 and FC 300

Syntax Example an1 = INAD 53
PRINT "Analog input 53 " ,an1

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 43

 INB

Summary Reads one byte from digital inputs

Syntax res = INB n

Parameter n = input byte:
0 = input 1 (LSB) - 8 (MSB)
1 = input 33 (LSB) - 18 (MSB)
2 = input 9 - 10 (12)

 or with CAN open I/O modules:
CAN-Bus + (Module-CAN-ID * 256) + input number (or input byte)

NB!:
Numbering of the bytes begins with 0; this is in contrast to the numbering of the
individual inputs, which starts with 1.

Return Value res = value of the input byte (0 - 255)

The least significant bit corresponds to the condition of input 1/33.

Description The condition of the digital inputs can be read as a byte via the INB command.

The values reflect the condition of the individual inputs.

 The definition of the high and low level, as well as the input circuit, can be taken
from the FC 300 manual.

 CAN modules which fulfill the CAN OPEN specifications can also be addressed with
the INB command via the corresponding number, which is defined as follows:

 CAN-Bus + (Module-CAN-ID * 256) + input number (or input byte)

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules, but for the moment there are no objects there which are
ready to receive, for example for interrupt functions. In order to execute interrupt
functions you have to initialize the corresponding module with CANINI beforehand.

Command Group I/O

Cross Index IN, OUT, OUTB, FC 300 Operating Instructions

Syntax Example in = INB 0 /* store the condition of the first 8 inputs */

Example IN1 = low, IN2 = high, IN3 = high,

all other inputs are low

res = 2^1 + 2^2 = 6

Program Sample INB_01.M, INB_02.M, OUTB_01.M

MCO 305 Command Reference
__ Command Reference __

44 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 INDEX

Summary Move to index position of the encoder

Syntax INDEX

Description Movement to the index position of the encoder will be started via the INDEX com-
mand. The Index search takes places with the Velocity for Home Motion defined in
par. 33-03. The Velocity for Home Motion sign determines the rotational direction
in which the Index signal will be searched.

NB!:
The utilized encoder must have ! ! ! an index channel.

NB!:
Only encoders with a low active index pulse can be used.

If an index pulse is not found within a complete revolution, then an alarm signal
occurs.

The INDEX command will also be carried out to the end in NOWAIT ON, before
further program processing can be begun.

NB!:
The command INDEX can not be used with absolute encoders (see par. 32-00
Incremental Signal Type).

Command Group INI

Cross Index HOME, POSA, DEFORIGIN, NOWAIT

Syntax Example INDEX /* move to index */

Program Sample INDEX_01.M

 INGLB

Summary Reads a global CAN message via CAN bus.

Syntax res = INGLB (p)

Parameter p = time-out, defined . . .
p = 0 waits until a message arrives
p > 0 waits a maximum of p milliseconds
p < 0 does not wait for a message

Return Value res = –1, if no message has come or bytes 2 and 3 of the CAN message, if a
message has been received.

The global variable MSGVAL then contains the upper bytes 4 to 7 of the CAN
message.

Description This command reads a global CAN message, i.e. a message which is sent to all
CAN devices on the bus. These messages have the identifier 0 and thus have
highest priority.

NB!:
This message is not buffered and thus will be written over when the next message
arrives.

Portability Standard command

Command Group CAN

Cross Index INMSG, OUTMSG

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 45

 INKEY

Summary Reads in a key signal.

Syntax INKEY (p)

Parameter p is the maximum waiting time, defined ...

 p = 0 wait for key code
p > 0 wait of max. p milliseconds
p < 0 no wait for key code
 (a negative parameter must be given in brackets)

Return Value key code for the received character or –1 in case no character available

Following key codes are sent back, as long as the key is pressed. If more than one
key were pressed simultaneously the corresponding sum of the values will be sent
back:

key: value:

[Main Menu] 1
[Quick Menu] 2
[Alarmlog] 4
[Status] 8
[OK] 16
[Cancel] 32
[Info] 64
[Back] 128
[]-key / right 256
[]-key / up 512
[]-key / down 1024
[]-key / left 2048
[Auto on] 4096
[Reset] 8192
[Hand on] 16384
[Off] 32768

Combinations send the corresponding values:

[OK] and [Cancel] 48
[Auto on] and []-key 4608

NB!:
The keys keep their FC 300-functions, unless they are disabled in parameter 0-4*.

NB!:
NLCP is not covered at the moment.

Description With the INKEY command it is possible to read a key signal from the keypad of the
FC 300 LCP. The parameter entered with INKEY determines whether the program
waits unconditionally for a key signal, for a certain period of time or not at all.

One key signal is read in per successful INKEY command respectively. To input a
string of characters it is necessary to repeat the INKEY command (p<>0) in a loop
until no further key signals exist.

Command Group I/O

Cross Index PRINT

MCO 305 Command Reference
__ Command Reference __

46 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Syntax Example input = INKEY 0 /* wait until key signal is read */
character = INKEY 5000 /* wait max. 5 seconds to input */
character = INKEY (-1) /* do not wait for input */

Program Sample INKEY_01.M, EXIT_01.M, WHILE_01.M

 INMSG

Summary Read CAN message from the buffer.

Syntax intval = INMSG time-out

Parameter time-out
 < 0 does not wait for data
 = 0 waits until data arrives
 > 0 waits for data in time-out [ms]

Return Value INMSG returns –1, if no message has arrived or bytes 2 and 3 of the CAN message
if a message has arrived.

The global variable MSGVAL contains the upper bytes 4 to 7 of the CAN message.

Description This command reads a message from the buffer, with time-out having an analog
meaning such as with the INKEY command. The message has an Id, which is
defined with the command “N_slaveno_baudraute” (see also $N command).

The CAN identification number of the message is determined by the $N command.

INMSG always reads objects which are 8 bytes long. Only bytes 2 to 7 are intended
for the user; bytes 0 and 1 are reserved.

Portability Standard command

Command Group CAN

Cross Index OUTMSG, ON CANMSG

Syntax Example a = INMSG –1
IF (a > –1) THEN
b = MSGVAL
ENDIF

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 47

 IPOS

Summary Queries last index or marker position of the slave

Syntax res = IPOS

Return Value res = last slave position (index or marker) absolute to actual zero point.

The position input is made in user units (UU) and corresponds in the standard
setting (parameter 32-12 UU Numerator and 32-11 UU Denominator = 1) to the
number of qc.

Description The command IPOS returns the last index or marker position of the slave absolute
to the current zero point.

NB!:
If a temporary zero point, set and activated via SETORIGIN, exists, then the
position is respective to this zero point

 The configuration of IPOS, that is whether the slave index- or marker position
(= controlled drive) is returned, is done via the par. 33-20 Slave Marker Type.

NB!:
The trigger signal for the marker position has to be connected mandatory to the
input 6.

 The position value in IPOS is accurate to +/- 1qc. In opposite to the position infor-
mation in APOS, which is just updated in a controller cycle of typically 1 ms, the
actual position value is hardware stored in real time a buffer (in an internal
processor register), when the configured signal is high. Then it will be copied in the
system variable IPOS.

If simultaneously to the marker position an interrupt is initiated (ON INT 6 GOSUB
...) and within this interrupt it is operated with IPOS, you should use before IPOS
reading a delay of 2 milliseconds (DELAY 2) within the interrupt subroutine. So it
can be ensured, that the latched position value is already complete copied in the
system variable IPOS and that not be taken an old value. See also sample.

NB!:
The command IPOS can not be used:

– with absolute encoders (see par. 32-00 Incremental Signal Type)

– when Parameter 32-50 is set to [3] – Motor Control.

Command Group SYS

Cross Index CPOS, DEFORIGIN, SETORIGIN, POSA, POSR, MIPOS, ON INT
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator, 33-20
Slave Marker Type

Syntax Example PRINT IPOS /* queries last index position and display on PC */

Sample ON INT 6 GOSUB slave_int // Definition interrupt handler
SET SYNCMTYPS 2 // Definition of IPOS latching on positive edge at input 6
CVEL 10 // Start moving
CSTART // Endless-Loop
mainloop: // ...
GOTO mainloop
SUBMAINPROG

MCO 305 Command Reference
__ Command Reference __

48 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SUBPROG slave_int
 int_pos = APOS // Latching APOS for testing, how exact it would be ...
 DELAY 2 // Wait 2 ms, to be sure, that IPOS is correct updated
 triggered_pos = IPOS // Latching IPOS for a later handling etc.
 //
 // ...
 PRINT "Interrupt position: ",int_pos
 PRINT "Triggered position: ",triggered_pos
 RETURN
ENDPROG

 IPOSDIFF

Summary Overflow handling of incremental encoders in applications.

Syntax res = IPOSDIFF oldpos

Parameter oldpos = IPOS at a previous time

Return Value Returns difference between IPOS and oldpos (res = IPOS – oldpos) in UU

Description This command simplifies overflow handling of incremental encoders in applications.
If, for example, the user stores an actual position in his program and wants to
calculate the difference at a later time, then he normally has to account for over-
flow of the position. Instead this command can be used: see below.

Internally those routines look if the difference is bigger than POS_LIMIT
(0x3FFFFFFF). If so then it is assumed that an overflow happened and it is handled
correctly.

NB!:
This will not solve the problem of overflowing if the application uses user units.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index IPOS

Syntax Example oldpos = IPOS
…..
diff = IPOSDIFF oldpos
 // this function returns the difference between IPOS and oldpos in user units
 // handling an overflow if necessary (diff = IPOS – oldpos)

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 49

 JERKFINVEL

Summary Calculates the final velocity for a jerk-limited stop with maximum
acceleration/deceleration.

Syntax res = JERKFINVEL

Return Value res = in percent (or VELRES units)

Description The command calculates the final velocity which would be reached if the actual
acceleration (or deceleration) stops under consideration of the given JERKMIN
values. This also works if some movement other than a RAMPTYPE 2 movement is
active. So you can calculate the final velocity if you want to leave your actual
SYNCP, for example. The result is in percent (or VELRES units) so you can use it
without conversion for a VEL or CVEL command.

The result could also be negative (e.g. driving backwards, or driving near the
velocity zero with a high deceleration).

Portability Command is available starting with MCO 5.00.

Command Group SYS

Syntax Example Par. 32-86 Acc. up for limited jerk JERKMIN, par. 32-82 RAMPTYPE

 JERKSTOPDIST

Summary Calculates the necessary distance for a jerk-limited stop with maximum
deceleration.

Syntax res = JERKSTOPDIST dec

Parameter dec = sets deceleration in % or VELRES units

Return Value res = distance in UU

Description The command calculates the distance that axis n will need to stop if it allows a
maximum deceleration of DEC and uses the RAMPTYPE 2 with JERKMIN2 and
JERKMIN4 (or JERKMIN). In the command, the deceleration DEC is given in percent
(or VELRES units) and the result is given in User-Units. This command also works if
you are not in a RAMPTYPE 2 movement. So you can calculate a RAMPTYPE 2 stop-
ramp if you are in SYNCP, for example.

Portability Command is available starting with version MCO 5.00.

Command Group SYS

Cross Index DEC, par. 32-83 VELRES, par. 32-86 Acc. up for limited jerk, par. 32-87 Acc. down
for limited jerk, par. 32-89 Dec. down for limited jerk

MCO 305 Command Reference
__ Command Reference __

50 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 LINKGPAR

Summary Links global parameter or parameter groups with LCP display

Syntax LINKGPAR parno "text" min max option

Parameter parno = LCP parameter number (group 19-00 to 19-99)

text = descriptive text for display; only ASCII text (8-bit) is supported

min = minimum value for this parameter

max = maximum value for this parameter

option = type of parameter

 0 = offline, i.e. changes are only active after they have been
confirmed with [OK].

 1 = online, that means changes via the LCP display are active at once.

Description With LINKGPAR free internal application parameter can be linked with the LCP
display. Subsequently it is possible to change this parameter via the LCP or read
out the set value.

When a linked parameter is changed with a SET command, the new value is also
automatically transferred to the LCP, but is not changed in the default settings
since the SET command only has a temporary effect.

If the user changes a linked parameter on the LCP, the new value is executed. Only
after the user has confirmed this value with OK is the new value saved permanent-
ly as an application parameter in the EPROM.

The command LINKGPAR tests whether the value of the application parameter is
within the specified range. If not, the corresponding limit is used and this value
saved. This ensures that a display appears.

Command Group PAR

Cross Index SET, GET, Application parameter, Parameter Reference

Syntax Example LINKGPAR 1901 "name" 0 100000 0
 /* Link par. 19-01 with LCP display */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 51

 LINKPDO

Summary Mapping of RxPDOs: Link the content of a RxPDO to elements of the internal
system variable pseudo array SYSVAR. Each change of the RxPDO is copied
automatically into the configured SYSVAR elements afterwards.

Syntax LINKPDO no len indx pdo

Parameter no = rank order in the RxPDO, beginning with 1

len = number of the bits to be imported;
requirement: length = a multiple of 8 (bit-by-bit),
(e.g. 128 to copy 4 long values into the PDO, if PDO holds more than 8
bytes)

indx = index of the system variable SYSVAR

pdo = 1 - 4 or 5 (“serial” PDO 5)
All values differing from the valid range, are handled like value 1 (even
'0'). This assures downward compatibility with old versions, which used 0
as default value.

NB!:

The rank order number (no) must – beginning with 1 – increase.

Multiple PDOs

The command can be used for any PDOs, i.e. that PDO 2 - PDO 5 are also
supported, if an up-to-date firmware and compiler version is in use. The PDO
number is defined by the last parameter (which was reserved by older firmware
versions) of the LINKPDO command. Backward compatibility is given by the fact,
that each PDO number out of range is handled like 1, i.e. that PDO 1 is default.
This guarantees, that older code using 0 as the last parameter by default behaves
the same and defaults to PDO 1 now.

CANopen PDO size

A CANopen PDO is always 8 bytes long; it can therefore hold a maximum of
8 objects.

PDO 5 (= “serial PDO”) Size

The mailbox size of the PDO 5 can be up to approx. 250 Bytes. The PDO 5 is also
used by the oscilloscope tool of the APOSS development environment, therefore it
is recommended to use this PDO not in applications, that shall be debugged using
the oscilloscope tool later on.

Description The command LINKPDO links the content of RxPDOs to elements of the system
variables pseudo array SYSVAR. This is called PDO mapping. Each change of
RxPDO data is copied automatically into the configured SYSVAR elements.

The system variables pseudo array SYSVAR holds internal data and variables, as
well as each SDO (according to the SDO object dictionary), which also means the
first 250 elements of each application array are included. The RxPDO data can be
directed to almost any variable, array or parameter by this. The SYSVAR index of a
SDO can be calculated with the following formula:

0x01000000 + ("SDO index" << 8) + "SDO subindex"

Example 1: SDO 0x2300 / 12 (= SDO holding axis parameter KPROP of axis 1)
=> SYSVAR index = 0x0123000C

Example 2: SDO 0x2100 / 5 (= SDO with the first element of the first application
array)
=> SYSVAR index = 0x01210001

MCO 305 Command Reference
__ Command Reference __

52 MG.34.R1.02 – VLT® is a registered Danfoss trademark

The RxPDO is also copied into the PDO array. The same data content can be
accessed by reading the PDO array.

 Automatic PDO activation

Just the PDO 1 (RxPDO = 0x200 + Node-ID / TxPDO = 0x180 + Node-ID) is
enabled by default according to the CANopen specification, i.e. the “Valid” bit
(0x1400 / Subindex 1) is set. If the mapping is configured for other PDOs using
LINKPDO (or LINKSDO), then the “Valid” bits (0x1401-0x1404, Subindex 1) of
these RxPDOs are also set automatically.

 CANopen versus APOSS mapping

If the SYSVAR index refers to a SDO of the SDO object dictionary (i.e. SYSVAR
index starts with 0x01…), then a pure CAN mapping is internally executed. When a
corresponding object is changed by a SDO command, the PDO is also immediately
rewritten. The mapping for the corresponding CAN object can be read-out by a
supervisor control unit.

If other SYSVAR indices are used, an APOSS mapping is carried out. This can be
combined with the CAN Mapping, but does not conform to CANopen, because the
correct map entries can not be read out by the CANopen mapping objects.

NB!:
The linking of internal system variables has to be accomplished very carefully und
should only be done from experienced APOSS users. Thorough knowledge about
the usage und meaning of the internal system variable is necessary, not to cause
an incorrect system behavior.

Portability Command is available starting with MCO 5.00.

Command Group PAR

Cross Index LINKSDO, SYSVAR, Parameter Reference, PDO

Syntax Example 1 // Link RxPDO 1 to user parameter 1 (= SDO 0x2201/01)
LINKPDO 1 32 0x01220101 0

Syntax Example 2 // Link 8 bits of RxPDO 1 to digital outputs 1 - 8 (= SDO 0x2202/10)
LINKPDO 1 8 0x0122020A 1
// Link next 8 bits of RxPDO 1 to outputs 9 - 16 (= SDO 0x2202/11)
LINKPDO 2 8 0x0122020B 1

Syntax Example 3 // Link 16 bits of RxPDO 1 into DS402 control word (= SDO 0x6040/0)
LINKPDO 1 16 0x01604000 1

 LINKSDO

Summary Mapping of the TxPDOs: Link elements of the internal system variable pseudo array
SYSVAR to a TxPDO. Each change of the corresponding SYSVAR element is
forwarded to the TxPDO automatically afterwards.

Syntax LINKSDO indx len no "text" pdo

Parameter indx = Index of the system variable SYSVAR

len = Length of the bits to be imported;
requirement: length = a multiple of 8 (bit-by-bit)
(e.g. 128 to copy 4 long values into the PDO, if PDO holds more than 8
bytes)

no = Rank order in the PDO

text = " " (has not yet been evaluated; however, can be uses as comment)

pdo = values between 1 - 4 or 5 (“serial” PDO 5)

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 53

NB!:

The rank order number (no) must – beginning with 1 – increase.

Multiple PDOs

The command can be used for any PDOs, i.e. that PDO 2 - PDO 5 are also
supported, if an up-to-date firmware and compiler version is in use. The PDO
number is defined by the last parameter (which was reserved by older firmware
versions) of the LINKSDO command. Backward compatibility is given by the fact,
that each PDO number out of range is handled like 1, i.e. that PDO 1 is default.
This guarantees, that older code using 0 as the last parameter by default behaves
the same and defaults to PDO 1 now.

CANopen PDO size

A CANopen PDO is always 8 bytes long; it can therefore hold a maximum of
8 objects.

PDO 5 (= "serial PDO") Size

The mailbox size of the PDO 5 can be up to approx. 250 Bytes. The PDO 5 is also
used by the oscilloscope tool of the APOSS development environment, therefore it
is recommended to use this PDO not in applications, that shall be debugged using
the oscilloscope tool later on.

Description The command LINKSDO links the content of one or more elements of the system
variables pseudo array SYSVAR to a TxPDO. This is called PDO mapping. Each
change of a linked SYSVAR element is forwarded automatically into the defined
bytes of the TxPDO.

The system variables pseudo array SYSVAR holds internal data and variables, as
well as each SDO (according to the SDO object dictionary), which also means the
first 250 elements of each application array are included. The content of almost
any variable, array or parameter can be forwarded to TxPDOs by the LINKSDO
mapping configuration. The SYSVAR index of a SDO can be calculated with the
following formula:

0x01000000 + ("SDO index" << 8) + "SDO subindex"

Example 1: SDO 0x2500 / 1 (= SDO holding the position value of axis 1)
=> SYSVAR index = 0x01250001

Example 2: SDO 0x2100 / 5 (= SDO with the first element of the first application
array)
=> SYSVAR index = 0x01210001

The TxPDO is also copied into the PDO array. The same data content can be
accessed by reading the PDO array.

NB!:
As standard, a changed PDO is automatically dispatched (asynchronous operating
mode). If this is not desired, then, you can set the SDO-Index 0x1800 sub index 2
to another value (e.g. 254, instead of the standard 255). Thereby, dispatching no
longer takes place automatically, but instead the PDO has to be collected per
remote frame.

 Automatic PDO activation

Just the PDO 1 (RxPDO = 0x200 + Node-ID / TxPDO = 0x180 + Node-ID) is
enabled by default according to the CANopen specification, i.e. the "Valid" bit
(0x1800 / Subindex 1) is set. If the mapping is configured for other PDOs using
LINKSDO (or LINKPDO), then the "Valid" bits (0x1801-0x1804, Subindex 1) of
these TxPDOs are also set automatically.

MCO 305 Command Reference
__ Command Reference __

54 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 CANopen versus APOSS mapping

If the SYSVAR index refers to a SDO of the SDO object dictionary (i.e. SYSVAR
index starts with 0x01…), then a pure CAN mapping is internally executed. When a
corresponding object is changed by a SDO command, the PDO is also immediately
rewritten. The mapping for the corresponding CAN object can be read-out by a
supervisor control unit.

If other SYSVAR indices are used, an APOSS mapping is carried out. This can be
combined with the CAN Mapping, but does not conform to CANopen, because the
correct map entries can not be read out by the CANopen mapping objects.

NB!:
The linking of internal system variables has to be accomplished very carefully und
should only be done from experienced APOSS users. Thorough knowledge about
the usage und meaning of the internal system variable is necessary, not to cause
an incorrect system behavior.

Portability Command is available starting with MCO 5.00; with the same version the#DEBUG
command has been replaced by the Debug mode.

Command Group PAR

Cross Index LINKPDO, SYSVAR, Parameter Reference, Debugging Commands, PDO

Syntax Example 1 // Link current position error (= SDO 0x0x2500/6) to TxPDO 1
LINKSDO 0x01250006 32 1 " " 1

Syntax Example 2 // Link digital inputs 1 - 8 (= SDO 0x2202/10) to TxPDO 1
LINKSDO 0x01220202 8 1 " " 1
// Link digital inputs 9 - 16 (= SDO 0x2202/10) to next 8 bits of TxPDO 1
LINKSDO 0x01220203 8 2 " " 1

Syntax Example 3 // Link DS402 status word (= SDO 0x6041/0) into TxPDO 1
LINKSDO 0x01604100 16 1 " " 1
// Link DS402 "Mode of operation display" (= SDO 0x6061/0) into TxPDO 1
LINKSDO 0x01606100 8 2 " " 1

 LINKSYSVAR

Summary Link system variable with LCP display

Syntax LINKSYSVAR indx parno "text"

Parameter indx = Index of the system variable SYSVAR

parno = LCP-Parameter number 19-00 to 19-99

text = descriptive text for display

Description The command LINKSYSVAR links the system variable SYSVAR[indx] with the
FC 300 Parameter (19-00 to 19-99) and the display "text". This means that you
can link internal values on the display without using LINKGPAR.

NB!:
The parameter is updated every 40 ms. Therefore, if five parameters are linked in
this way, it takes at least 200 ms until the same parameter is updated.

Command Group PAR

Cross Index LINKGPAR, SYSVAR, Application parameter, Parameter Reference

Syntax Examples LINKSYSVAR 33 1990 "internal line number"
LINKSYSVAR 30 1991 "Motor voltage"

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 55

 LOOP

Summary Defined loop repetition

Syntax LOOP n label

Parameter n = number of loop repetitions
label = identification of target program position

Description A single or multiple repetition of a certain program part can be realized by using
the LOOP command. The number of loop repetitions can be given as either an
absolute value or in the form of a variable.

The program position to be jumped to is identified via a label. A label can be made
up of one or more characters, and must not be identical with a variable name or a
command word. A label must also be unique, i.e. the same label may not be used
more than once for different program positions.

NB!:
The label on the target program position must be followed by a colon (:).

Because the internal loop counter monitors only at the end of the loop and then
decreases by one, the commands within the loop will be carried out with one more
sequence than keyed in (keyed in loop repetitions 10 = 11 real repetitions).

Command Group CON

Cross Index GOTO, WHILE .. ENDWHILE, REPEAT .. UNTIL

Syntax Example next_in: /* jump to label */
 command line 1
 command line n
LOOP 9 next_in /* repeat loop contents 10 times */

Program Sample LOOP_01.M, APOS_01.M, IN_01.M, MOTOR_01.M, NOWAI_01.M

 MAPOS

Summary Queries current actual position of the master

Syntax res = MAPOS

Return Value res = master position to absolute actual zero point in qc

Description With the MAPOS command it is possible to query the actual master position
(absolute to the actual zero position).

Command Group SYS

Cross Index CPOS, DEFORIGIN, SETORIGIN, POSA, POSR,
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator

Syntax Example PRINT MAPOS /* queries actual master position and print to PC */

MCO 305 Command Reference
__ Command Reference __

56 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 MAPOSDIFF

Summary Overflow handling of incremental encoders in applications.

Syntax res = MAPOSDIFF oldpos

Parameter oldpos = MAPOS at a previous time

Return Value Returns difference between MAPOS and oldpos (res = MAPOS – oldpos) in UU

Description This command simplifies overflow handling of incremental encoders in applications.
If, for example, the user stores an actual position in his program and wants to
calculate the difference at a later time, then he normally has to account for
overflow of the position. Instead this command can be used, see below.

Internally those routines look if the difference is bigger than POS_LIMIT
(0x3FFFFFFF). If so then it is assumed that an overflow happened and it is handled
correctly.

NB!:
This will not solve the problem of overflowing if the application uses user units.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index MAPOS

Syntax Example oldpos = MAPOS
..
diff = MAPOSDIFF oldpos
 // this function returns the difference between MAPOS and oldpos in user units
 // handling an overflow if necessary (diff = MAPOS – oldpos)

 MAVEL

Summary Queries actual velocity of the master

Syntax res = MAVEL

Return Value res = actual velocity of the master in qc/s, the value is signed

Description This function returns the actual velocity of the master drive in qc/s, with qc
referring to the master encoder.

The accuracy of the values depends on the duration of the measurement
(averaging). The standard setting is 20 ms, but this can be changed by the user
with the _GETVEL command. It is sufficient to call up the command once in order
to work with another measuring period from then on. Thus, the command:

 var = _GETVEL 100

sets the duration of the measurement to 100 ms, so that you have a considerably
better resolution of the speed with AVEL / MAVEL, however, in contrast, quick
changes are reported with a delay of a maximum of 100 ms.

Command Group SYS

Cross Index AVEL

Syntax sample PRINT MAVEL /* queries actual velocity of the master and print to PC */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 57

 MENCPOSOFFS

Summary Syncs the incremental position counter with the absolute counter in the encoder.

Syntax result = MENCPOSOFFS offset

Parameter offset = Returns the difference between absolute and incremental position
(absolute –incremental)

Return values OK 0 The command was successful

TIMEOUT -1 No answer has been received within 300ms

BADFRAME -2 The received frame is not valid

OVERFLOW -4 Received more bytes than the receive buffer can take

Description The difference between the absolute encoder position and the incremental counter
is determined and returned.

For this, the incremental counter in the DSP is latched exactly at the moment where
also the Hiperface encoder latches the absolute position which it sends back over
RS485.

With this difference, the user e.g. can set the position within APOSS to the absolute
value with SETMORIGIN.

You can also use the ENCPOSOFFS command in case the Hiperface encoder is used
as slave signal instead of master signal (see parameter 32-52)

Command Group SYS

Cross Reference ENCPOSOFFS

Program Sample See program sample ENCPOSOFFS command.

 MENCTGREAD

Summary Reads a RS485 telegram from the encoder.

Syntax result = MENCTGREAD array

Parameter array = The user array where the received payload data should be put.

Return values OK x (>0) TG has arrived with x bytes user data

ACTIVE 0 The transmission is still ongoing

TIMEOUT -1 No answer has been received within 300ms

BADFRAME -2 The received frame is not valid

OVERFLOW -4 Received more than the receive buffer can take

Description After a telegram has been sent with MENCTGWRITE, the answer can be polled by
this command. The return value will show if it has already arrived or if a timeout
has occurred.

You can also use the ENCTGREAD command in case the Hiperface encoder is used
as slave signal instead of master signal (see parameter 32-52)

Command Group SYS

Cross Reference ENCTGREAD, MENCTGWRITE

Program Sample See program sample ENCTGREAD command.

MCO 305 Command Reference
__ Command Reference __

58 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 MENCTGWRITE

Summary Sends a RS485 telegram to the encoder.

Syntax result = MENCTGWRITE length array

Parameter length = The number of bytes (in the user array) to be sent.

array = The user array containing the payload data to send to the encoder.

Return values OK 0 Telegram has been sent

BUSY -3 There is still another transmission ongoing and not timed out yet

Description This command will send a RS485 telegram to the encoder with the ID
“MENCODERID”. The user has to fill the payload data into an array before. The
command will then put this data into a regular RS485 frame and add CRC value to
it.

The command does not wait till the data has been sent or an answer is received, it
returns immediately.

The answer of the telegram has to be polled with MENCTGREAD

You can also use the ENCTGWRITE command in case the Hiperface encoder is used
as slave signal instead of master signal (see parameter 32-52).

Command Group SYS

Cross Reference MENCTGREAD, ENCTGWRITE

Program Sample See program sample ENCTGREAD command.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 59

 MIPOS

Summary Query last index or marker position of the master

Syntax res = MIPOS

Return Value res = last index or marker position of the master absolute to actual zero point in qc

Description The command MIPOS returns the last index or marker position of the master
absolute to the current zero point.

 The configuration of MIPOS, that is whether master-encoders index- or marker posi-
tion (= controlled drive) is returned, is done with the par. 33-19 Master Marker Type.

NB!:
The trigger signal for the marker position has to be connected mandatory to the
input 5.

 The position value in MIPOS is accurate to +/- 1qc. In opposite to the position
information in MAPOS, which is just updated in a controller cycle of typically 1 ms,
the actual position value is hardware stored in real time a buffer (in an internal
processor register), when the configured signal is high. Then it will be copied in the
system variable MIPOS.

If simultaneously to the marker position an interrupt is initiated (ON INT 5 GOSUB
...) and within this interrupt it is operated with MIPOS, you should use before reading
of MIPOS a delay of 2 milliseconds (DELAY 2) within the interrupt subroutine. So it
can be ensured, that the latched position value is already complete copied in the
system variable MIPOS and that not be taken an old value. – See also sample.

NB!:
The command MIPOS can not be used:
– with absolute encoders (see par. 32-30 Incremental Signal Type)
– when Parameter 32-50 is set to [3] – Motor Control.

Command Group SYS

Cross Index CPOS, DEFORIGIN, SETORIGIN, POSA, POSR, ON INT
Par.: 32-12 UU Numerator, 32-11 UU Denominator, 33-19 Master Marker Type

Syntax Example PRINT MIPOS /* print to the PC the last index position of the master */

Sample // Definition Interrupt-Handler
ON INT 5 GOSUB master_int
 // Definition of IPOS-Latching on positive edge at input 5
SET SYNCMTYPM 2
CVEL 10 // Start moving
CSTART // Endless-Loop
mainloop: // ...
GOTO mainloop
SUBMAINPROG
SUBPROG master_int
 int_mpos = MAPOS
 // Latching MAPOS for testing, how exact it would be …
 DELAY 2 // Wait 2 ms, to be sure, that MIPOS is correct updated
 triggered_mpos = MIPOS // Latching IPOS for a later handling etc.
 // ...
 // ...
 PRINT "Interrupt master position: ",int_mpos
 PRINT "Triggered master position: ",triggered_mpos
 RETURN
ENDPROG

MCO 305 Command Reference
__ Command Reference __

60 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 MIPOSDIFF

Summary Overflow handling of incremental encoders in applications.

Syntax res = MIPOSDIFF oldpos

Parameter oldpos = MIPOS at a previous time

Return Value Returns difference between MIPOS and oldpos (res = MIPOS – oldpos) in UU

Description This command simplifies overflow handling of incremental encoders in applications.
If, for example, the user stores an actual position in his program and wants to
calculate the difference at a later time, then he normally has to account for
overflow of the position. Instead this command can be used; see below.

Internally those routines look if the difference is bigger than POS_LIMIT
(0x3FFFFFFF). If so then it is assumed that an overflow happened and it is handled
correctly.

NB!:
This will not solve the problem of overflowing if the application uses user units.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index MIPOS

Syntax Example oldpos = MIPOS
..
 diff = MIPOSDIFF oldpos
 // this function returns the difference between MIPOS and oldpos in user units
 // handling an overflow if necessary (diff = MIPOS – oldpos)

 MOTOR OFF

Summary Turns off motor control

Syntax MOTOR OFF

Description The motor control can be disabled by using the MOTOR OFF command. After
MOTOR OFF, the drive axis can be moved freely, as long as there is no motor
brake. A monitoring of the actual position will continue to take place, i.e. the actual
position (APOS) can still be queried after MOTOR OFF.

NB!:
For a restart of a motion process after MOTOR OFF the command MOTOR ON must
be used. Only the command ERRCLR automatically activates MOTOR ON.

Command Group INI

Cross Index MOTOR ON

Syntax Example MOTOR OFF /* switch off controller of the axis */

Program Sample MOTOR_01.M, POS_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 61

 MOTOR ON

Summary Turns on motor control

Syntax MOTOR ON

Description The motor control can be enabled again, following a previous MOTOR OFF, by use of
the MOTOR ON command. When carrying out the MOTOR ON, the commanded
position is set to the actual position, i.e. the motor remains at the actual position.
Thus the positioning error is reset at the execution of MOTOR ON.

NB!:
The MOTOR ON command is not suitable for re-activation of position control
following an error. For this purpose, the ERRCLR command is to be used.

Command Group INI

Cross Index MOTOR OFF

Syntax Example MOTOR ON /* switch on controller of the axis */

Program Sample MOTOR_01.M, POS_01.M

 MOTOR STOP

Summary Stops the drive

Syntax MOTOR STOP

Description By using the MOTOR STOP command, a drive in positioning, speed or synchronizing
mode can be decelerated with programmed acceleration and arrested at the
momentary position.

A drive arrested with this command can, at a later point, via the CONTINUE
command, resume its original motion. (Exception: CONTINUE does not continue an
interrupted synchronization command.)

NB!:
If MOTOR STOP is executed in a subprogram or if NOWAIT is set to ON, then the
next lines in the program are already processed while MOTOR STOP is being
processed; the braking process runs in the background.

Therefore, in order to slow the drive down to a speed of zero it is necessary to
ascertain that no new positioning command is given during braking.

Command Group CON

Cross Index POSA, POSR, CSTART, CONTINUE, CSTOP, NOWAIT

Syntax Example MOTOR STOP /* interrupt motion of the axis */

Program Sample MSTOP_01.M

MCO 305 Command Reference
__ Command Reference __

62 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 MOVESYNCORIGIN

Summary Relative shifting of the origin of synchronization

Syntax MOVESYNCORIGIN mvalue

Parameter mvalue = Relative offset in relation to the Master in qc

Value range:
(–MLONG / par. 33-11 SYNCFACTS) – (MLONG / par. 33-11 SYNCFACTS)

Description The command shifts the origin of synchronization in relation to the master. While
SET SYNCPOSOFFS sets the offset position absolutely, MOVESYNCORIGIN always
relates to the last one and shifts the offset position relatively. If you have to shift
the offset position continually, you can prevent too large numbers or an overflow in
this way.

NB!:
Valid for position synchronization SYNCP and position synchronization with marker
correction SYNCM.

Command Group SYN

Cross Index SET,
Parameters: 33-11 Synchronization Factor Slave, SYNCFACTS,
33-12 Position Offset for Synchronization, SYNCPOSOFFS

Syntax Example MOVESYNCORIGIN 1000

 MSGVAL

Summary Contains the second part of the last read CAN message.

Syntax longval = MSGVAL

Return Value longval = bytes 4 to 7 of the last CAN message to be read

Description MSGVAL is a variable which returns the long value of the CAN message. The CAN
message must have been previously read with INMSG or INGLB.

This value is only valid as long as no new INMSG or INGLB command has been
executed.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index INMSG, INGLB, ON CANMSG

Syntax Example a = INMSG –1
IF (a > –1) THEN b = MSGVAL
ENDIF

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 63

 NOWAIT

Summary Wait / Do not wait after a POSA/POSR command

Syntax NOWAIT s

Parameter s = condition:

 ON = continue program execution while going to target position
OFF = hold program execution until target position is reached

Description The NOWAIT command defines the program flow for positioning commands.

There are two conditions NOWAIT ON and NOWAIT OFF:

NOWAIT ON This will allow the system to simultaneously position and to process the following
instructions as well.

When starting a positioning command with NOWAIT ON, further command procedu-
res are continued and the positioning work takes place in the background (so to
say). In the NOWAIT ON condition it is thus possible to query the momentary posi-
tion, or to alter the velocity or the target position during the positioning procedure.

NOWAIT OFF Allows the execution of the program line by line, i.e., the positioning takes place
and the processor waits till it is over and then does the following instructions.

Note: The dotted arrows mean the movement positions.

NB!:
The default condition is NOWAIT OFF, i.e. if no NOWAIT instruction is contained
within a program, then the positioning procedure is carried out in its entirety
before the processing of the next command is begun.

If, when in NOWAIT condition during an active positioning procedure, a further
positioning command follows, then the new target position will be tracked without
interruption.

The HOME as well as the INDEX commands will be processed to the end in the
NOWAIT ON condition, before the next command can be begun.

Command Group CON

Cross Index WAITAX, AXEND, POSA, POSR, HOME, INDEX

Syntax Example NOWAIT ON /* no waiting after POS-commands */
NOWAIT OFF /* wait after POS-commands till target reached */

Program Samples NOWAI_01.M,MSTOP_01.M, OUT_01.M, VEL_01.M

MCO 305 Command Reference
__ Command Reference __

64 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ON CANINPUT

Summary Call up a subprogram when a CAN telegram type 'id' arrives.

Syntax ON CANINPUT id GOSUB name

Parameter id = 0

name = name of the subroutine

Return Value –

Description The instruction ON CANINPUT calls up a subroutine, when a global CAN telegram
with the identifier '0' arrives. This is the same input telegram, which can be read
out with INGLB and MSGVAL.

This global telegram is also used for the program break. Therefore be aware that
byte 0 and 1 may not be used and must set to 0. In contrast the bytes 2 up to 7
can be freely used.

Additional it can be react on a received zero telegram with ON CANINPUT.

NB!:
The instruction should be located at the beginning of the program so that it is valid
for the entire program.

The subroutine to be called up must be defined within the program area marked
with SUBMAINPROG and ENDPROG.

Portability Command is available starting with MCO 5.00.

Command Group INT

Cross Index ON ERROR, ON INT, ON PERIOD, ENABLE …, DISABLE …

Syntax-Example ON CANINPUT 0 GOSUB break /* interrupt procedure is defined */

 ON CANMSG GOSUB

Summary Calls up subroutine.

Syntax ON CANMSG GOSUB name

Parameter name = name of the subroutine

Description Calls up a subroutine when there is a message in the buffer. Subroutine name is
called up when at least one message is in the CAN receive buffer.

NB!:

– The instruction ON CANMSG GOSUB should be located at the beginning of the
program so that it is valid for the entire program.

– The subroutine to be called up must be defined within the program area marked
with SUBMAINPROG and ENDPROG.

Portability Command is available starting with MCO 5.00.

Command Group INT

Cross Index ON ERROR, ON INT, ON PERIOD, ENABLE …, DISABLE …

Syntax Example ON CANMSG GOSUB CAN PROC /* interrupt procedure is defined */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 65

 ON COMBIT .. GOSUB

Summary Call up a subprogram when Bit n of the communication buffer is set.

Syntax ON COMBIT n GOSUB name

Parameter n = Bit n of communication buffer
–32 <= n<=32, n!= 0

name = name of subprogram

NB!:
ON COMBIT refers to the first 32 Bits of the process data memory.

Description The instruction ON COMBIT is used to call up a subprogram when Bit n of the
communication buffer is set.

NB!:

– The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

– During the execution of an ON COMBIT subroutine NOWAIT is set to ON.

Priority If a number of interrupts occur simultaneously, the subprogram assigned to the
lowest bit is worked through first. The other interrupts will be processed after-
wards. If, during an interrupt subroutine, the same interrupt occurs (exception:
error interrupt), then it will be ignored and thus lost.

Portability In the case of COMOPTGET and COMOPTSEND, the offset of 2 Word is retained for
compatibility reasons.

Command Group INT

Cross Index SUBPROG .. RETURN, COMOPTGET, COMOPTSEND, Priorities of Interrupts, NOWAIT

Syntax Example ON COMBIT 5 GOSUB test // set interrupt on field bus bit 5

MCO 305 Command Reference
__ Command Reference __

66 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ON DELETE .. GOSUB

Summary Deletes a position interrupt.

Syntax ON DELETE pos GOSUB name

Parameter pos = value

name = name of subprogram

Description The command can be used to delete position interrupt, e.g. ON APOS, which is
defined as follows:

 ON sign APOS xxx GOSUB name

The parameter ‘pos’ of this command can hold any value, e.g. 0. It is not checked
and has no relevance for the deletion of the interrupt. The main importance
belongs to the parameter ‘name’, which has to hold the name of the subprogram
that was formerly defined in the ON APOS command. So, the ‘ON DELETE pos
GOSUB name’ command deletes any (!) position interrupt, which belongs to the
subprogram identified by the given name. Please see sample 1.

NB!:
Only position interrupts are deleted, but no other type of interrupt.

 Re-routing of an ON ... APOS ... GOSUB

It is possible to ‘re-route’ a position interrupt to another subprogram. This does not
define a new interrupt, but just modifies the subprogram, which has to be
executed in case of interrupt detection.

The command syntax is the same like for the ON APOS command:

 ON sign APOS xxx GOSUB newname

The parameters ‘sign’ and ‘xxx’ have to be exactly the same like within the original
definition. The position which is concerned is identified by these two parameters.
The parameter ‘newname’ has to hold the updated name of the subprogram, which
has to be called up in case of the interrupt, takes place. Please see sample 2.

NB!:
Only position interrupts can be re-routed, but no other type of interrupt .

Command Group INT

Cross Index ON posint GOSUB, ON INT ..

Syntax Example 1 ON – APOS 20000 GOSUB hitinfo // Interrupt #1
ON – APOS 10000 GOSUB hitinfo // Interrupt #2
ON + APOS 10000 GOSUB hitinfo // Interrupt #3
ON + APOS 0 GOSUB hitzero // Interrupt #4
ON – APOS 0 GOSUB hitzero // Interrupt #5
ON INT 3 GOSUB hitinfo // Interrupt #6
…
ON DELETE 0 GOSUB hitinfo
…
ON + APOS 99999 GOSUB hitinfo // New defined position interrupt

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 67

 Result:

All the position interrupts (#1, #2, #3) belonging to the subprog hitinfo are
deleted as soon as ‘ON DELETE 0 GOSUB hitinfo’ is executed. These interrupts
don’t count anymore for the maximum number of available interrupts and can not
be enabled or disabled anymore. All other non-position interrupts, even the ones
belonging to the same subprogram (e.g. ON INT 3) are still valid!

As soon as the command line ‘ON + APOS 99999 GOSUB hitinfo’ is executed, this
defines a new position interrupt, which is “linked” to the given subprogram (that
has been already in use before).

Syntax Example 2 ON – APOS 10000 GOSUB hitinfo // Interrupt #1
ON + APOS 10000 GOSUB hitinfo // Interrupt #2
…
ON + APOS 10000 GOSUB hitposdir // Re-routed interrupt #2

Result:
As soon as the second definition of the ‘ON + APOS 10000 ...’ is executed, the
interrupt #2 is “re-routed” to the newly defined subprogram ‘hitposdir’. It is still
the same interrupt (i.e. not an additional one), which calls up another subprogram
now. The “old” definition of interrupt #1 ‘ON – APOS 10000 GOSUB hitinfo’ is still
valid without any modification.

 ON DELETE .. SETOUT

Summary Deletes all interrupts which set or reset an output.

Syntax ON DELETE sign inttype SETOUT outno

Parameter sign + = rising edge
– = falling edge

inttype = APOS
IPOS
MAPOS
MCPOS
MIPOS

outno = output number

Description This command deletes all interrupts which set or reset the output outno.

If the outno is positive in the above command, then only interrupts are deleted
where the outno is set. If outno is negative, then only interrupts are deleted where
the output is reset. So if you use both types of interrupt definitions, you must also
have two delete commands for that.

Portability Command is available starting with MCO 5.00.

Command Group INT

Cross Index ON INT .. GOSUB, ON posint GOSUB

Syntax Example SET SYNCMPULSS 20000 // distance between two markers
ON +ipos 500 SETOUT 1
ON +ipos 1000 SETOUT -1
...
(program)
...
ON DELETE 0 SETOUT 1
ON DELETE 0 SETOUT -1

MCO 305 Command Reference
__ Command Reference __

68 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ON ERROR GOSUB

Summary Definition of an error subroutine

Syntax ON ERROR GOSUB name

Parameter name = name of the subroutine

Description By using the ERROR GOSUB instruction, a subroutine will be defined, which can be
called up in case of error. If an error occurs after the definition, then an automatic
program abort will not take place – instead, the defined subroutine will be called
up.

Within this subroutine, it is possible to target the re-action to the error, to wait for
user intervention via ERRCLR (clear error) or, in the case of non-correctable errors,
to abort the program via the EXIT instruction.

If the program is not aborted, then the processing will continue from the point
where the interruption occurred.

By using the CONTINUE command, it is possible to continue the error-interrupted
motion. (Exception: synchronization commands)

NB!:
The ON ERROR GOSUB instruction should be at the start of a program, so that it
has validity for the entire program.

The subroutine to be called up must be defined within the identified SUBMAINPROG
and ENDPROG program.

 The identification of an error condition and the call up of the corresponding sub-
routine requires a maximum of 2 milliseconds.

NB!:

– Error subroutines cannot be interrupted through any other interrupts.

– During the execution of an error routine NOWAIT is automatically set to ON.

 If the error subroutine is exited with the error still active because e.g. ERRCLR was
not carried out or another error has occurred, then a new call takes place.

NB!:
The ON ERROR GOSUB xx routine does not terminate the HOME and INDEX com-
mand. This means they will be executed after the error has been cleared. To
prevent this an ON TIME 1 can be included in the error routine.

Command Group INT

Cross Index SUBPROG…RETURN, ERRCLR, ERRNO, CONTINUE, EXIT, Priorities of Interrupts, ON
TIME, NOWAIT

Syntax Example ON ERROR GOSUB errhandle /* definition of an error subroutine */
command lines 1 … n
SUBMAINPROG /* subroutine errhandle must be defined */
 SUBPROG errhandle
 command lines 1 … n
 RETURN
ENDPROG

Program Sample ERROR_01.M, IF_01.M, INDEX_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 69

 ON INT .. GOSUB

Summary Defining an interrupt input

Syntax ON INT n GOSUB name

Parameter n = number of the input to be monitored; reaction to the rising edge
(input area 1 … 8 and FC 300 inputs 18 … 33)

-n = number of the input to be monitored, reaction to the falling edge
(input area –8 … –1 and FC 300 inputs –33 … –18)

 = or with CAN applications > 256:
Module number * 256 + I/O number

name = subroutine name

Description By using the ON INT GOSUB instruction, a subroutine must be defined which will be
called up when an edge is detected at the monitored input.

A maximum of one subroutine per input can be defined.

The ON INT command allows the assignment of a positive interrupt and a negative
interrupt for an input at the same time:

 ON INT 1 GOSUB posedge
 ON INT -1 GOSUB negedge

This definition can take place at any time. If, following this definition, a corres-
ponding interrupt occurs, then the accompanying subroutine is called up and pro-
cessed. After the last subroutine command (RETURN), the program will continue
from the point of interrupt.

If interrupt functions are set to CAN modules, they have to be initialized with
CANINI.

NB!:
The ON INT GOSUB instruction should be at the start of the program, so that it has
validity for the entire program.

The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

 The identification of an interrupt and the call up of the corresponding subroutine
requires a maximum of 2 milliseconds. Interrupt from FC 300 input add additional
2 ms, in worst case.

 A minimal signal length of 1 ms is necessary for the sure identification of a level
change! The chapter input/output terminal contains more information concerning
the input circuit and input technical data.

NB!:

– The instruction for ON INT GOSUB is edge and not level triggered.

– During the execution of a subroutine called by an interrupt NOWAIT is
automatically set to ON.

Priority If a number of interrupts occur simultaneously, the subprogram assigned to the
lowest bit is worked through first. The other interrupts will be processed after-
wards. If, during an interrupt subroutine, the same interrupt occurs (exception:
error interrupt), then it will be ignored and thus lost.

Portability Starting with MCO 5.00 a positive and a negative interrupt for an input at the same
time can be assigned.

The CAN commands operate with the pre-defined PDOs of CANopen. Do not change
these default settings (minimum capability device), otherwise the CAN commands
will not operate anymore.

Command Group INT

MCO 305 Command Reference
__ Command Reference __

70 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Cross Index SUBPROG..RETURN, ON ERROR .. GOSUB, WAITI, DISABLE interrupts, ENABLE
interrupts, Priorities of Interrupts, NOWAIT, CANINI

Syntax Example ON INT 4 GOSUB posin /* Definition of Input 4 (positive edge) */
ON INT –5 GOSUB negin /* Definition of input 5 (negative edge) */
command line 1
command line n
SUBMAINPROG /* subroutine must be defined */
 SUBPROG posin
 command line 1
 command line n
 RETURN
 SUBPROG negin
 command lines 1 … n
 RETURN
ENDPROG

Program Sample ONINT_01.M, DELAY_01.M

 ON KEYPRESSED GOSUB

Summary Interrupt when a key pressed or released.

Syntax ON KEYPRESSED GOSUB name

Parameter name = name of subroutine

Description The instruction ON KEYPRESSED can be used to respond, when a key of the LCP
panel is pressed and or released.

 The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

NB!:
During the execution of subroutine called by an interrupt NOWAIT is automatically
set to ON.

Command Group INT

Cross Index SUBPROG .. RETURN, INKEY

Syntax Example ON KEYPRESSED GOSUB keyhandler
WHILE(1) DO // endless loop
ENDWHILE
////////////////////////////////////
SUBMAINPROG
SUBPROG keyhandler
 key = INKEY(-1) // don't wait for key

 PRINT key
RETURN
ENDPROG

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 71

 ON PARAM .. GOSUB

Summary Call up a subprogram when a parameter is altered.

Syntax ON PARAM n GOSUB name

Parameter n = parameter number

name = subroutine name

Description The instruction ON PARAM can be used to respond when parameters are altered via
the LCP display and to call up a subprogram.

All parameters (32-xx, 33-xx) and all application parameters (19-xx) as well as
parameters of general interest (e.g. 8-02, 5-00) can be used.

 The ON PARAM for array elements (e.g. ON PARAM 0x01210005) also works if the
array is mapped into a receive PDO with a LINKPDO command, but it is limited.
Only one array element can be used in an ON PARAM per linked array.

Example:

DIM test[100]

LINKPDO 1 320 0x01210005 0
 // the first ten longs of the PDO are linked into
 // the first ten elements of array test

ON PARAM 0x01210007 GOSUB test
 // if the third element of array test changes

If another ON PARAM is added like

ON PARAM 0x01210009 GOSUB testsub
 // if the fifth element of array test changes

then this will overwrite the first ON PARAM, because only one per LINK-Array. can
be handled

The ON PARAM will become active if the array element is written by an incoming
PDO or by an SDO write to the SDO 0x012100ss with the correct subindex.

It will not become active if the array is written in the program by test[nn] = value.
And it will not become active if the whole array gets overwritten by an array write
using the 0x23FF SDO.

NB!:

– A maximum of 10 ON PARAM functions are possible.

– The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

– During the execution of a subroutine called by an interrupt NOWAIT is
automatically set to ON.

Priority If, during an interrupt subroutine, the same interrupt occurs (exception: error
interrupt), then it will be ignored and thus lost.

Command Group INT

Cross Index SUBPROG..RETURN, DISABLE interrupts, ENABLE interrupts, Priorities of Interrupts,
NOWAIT

Syntax Example 1 ON PARAM 3267 GOSUB poserr // when position error is changed
SUBMAINPROG
 SUBPROG poserr
 PRINT "New position error: ", GET POSERR
 RETURN

Syntax Example 2 // Trigger an interrupt each time the CANopen DS402 "Mode of operation" changes
ON PARAM 0x01606000 GOSUB OpModeUpdate

MCO 305 Command Reference
__ Command Reference __

72 MG.34.R1.02 – VLT® is a registered Danfoss trademark

SUBMAINPROG
SUBPROG OpModeUpdate
 PRINT "New DS402 Operation Mode: ",sysvar[0x01606000]
 // Execute an action depending on the new operating mode
 SWITCH (sysvar[0x01604000])
 CASE 1:
 PRINT "Profile position mode"
 // Action
 BREAK
 CASE 2:
 PRINT "Velocity mode"
 // Action
 BREAK
 // CASE
 // ...
 // BREAK
 DEFAULT:
 PRINT "Operation Mode is not supported"
 ENDSWITCH
RETURN
ENDPROG

Syntax Example 3 // Link the RxPdo with the user parameter 1 ...
LINKPDO 1 32 0x01220101 0
// and configure an interrupt each time it changes
ON PARAM 0x01220101 GOSUB UserParamUpdate
SUBMAINPROG
SUBPROG UserParamUpdate
 PRINT "User Parameter 1 updated: ",sysvar[0x01220101]
RETURN
ENDPROG

 ON PERIOD

Summary Calls up a subroutine at regular intervals.

Syntax ON PERIOD n GOSUB name

Parameter n > 20 ms = time in ms, after which the subroutine is called up again

n = 0 = switch off the function

name = subprogram name

Description With ON PERIOD it is possible to call up a subprogram at regular intervals (time
triggered). ON PERIOD works like an interrupt. Is checked every 20 ms.

NB!:

– The precision with which the time is depends on the remaining program.
Typically the precision is ±1 ms.

– The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program

– During the execution of an ON PERIOD subroutine NOWAIT is set to ON.

Command Group INT

Cross Index ON TIME, GOSUB, DISABLE interrupts, ENABLE interrupts, Priorities of Interrupts,
NOWAIT

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 73

 ON posint .. GOSUB

Summary Call up a subprogram when a position interrupt occurs.

Syntax ON sign postype position GOSUB name

Parameter sign + = rising edge or when the position is passed in positive direction

 – = falling edge or when the position is passed in negative direction

 100 xxx 0

 <− − − − − − positive direction
 − − − − − − > negative direction

postype = APOS
IPOS
MAPOS
MCPOS
MIPOS

position = depending on the command in user units [UU], or master user units
[MU], or curve units [CU]

name = subprogram name

Description If an ON xPOS command is used and a position is given which lies behind an
overflow of the encoder, then internally this is handled automatically.

If e.g. no POSFACTs are set, then the following is now handled correctly.

 testpos = 0x3FFFFFF0 // position short before overflow
 newpos = testpos + 200 // new test position
 ON +APOS newpos GOSUB myprog

The newpos is internally handled by a correct entry into the interrupt list.

The same is true if the POSFACT_Z and POSFACT_N is set and the user value will
cause an overflow of the internal qc positions.

 All or single position interrupts can be deleted with the command ON DELETE ..
GOSUB.

NB!:

– The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

– During the execution of subprograms triggered by an interrupt, NOWAIT ON is
set automatically.

ON APOS .. GOSUB Call up a subprogram when the slave position xxx (UU) has been passed in positive
or negative direction. The instruction can be useful for positioning and synchroniza-
tion controls, as well as for CAM controls and CAM boxes. For example, in order to
replace the increasing slave position in the case of open curves after each cycle by
a recurring reference point.

Sample:

 CSTART
ON +apos 2000 GOSUB stop
SUBMAINPROG
 SUBPROG stop
 CSTOP
 RETURN
ENDPROG

Initial

0

After Positioning

0

 As per the program above the drive stops once it reached the position 2000.

MCO 305 Command Reference
__ Command Reference __

74 MG.34.R1.02 – VLT® is a registered Danfoss trademark

ON IPOS .. GOSUB This position interrupt looks at the distance between the last marker position and
the actual position. It is important that the SYNCMPULSS is set correctly. This
information is used for detection of overflow as well as for backward driving. In the
case of backward driving, the information used is (SYNCMPULSS + (APOS – IPOS))
instead of (APOS – IPOS).

ON MAPOS .. GOSUB Call up a subprogram when the master position xxx (MU) has been passed in
positive or negative direction. For example, in order to set an output at any point
in the case of a linear drive (slave) with a traversing range from 0 to 10000 UU.

Here according to the program Velocity Synchronization starts after Master has
reached 2200 qc in positive direction. Then the slave and master move in SYNCV.

ON MCPOS .. GOSUB Call up a subprogram when the master position xxx (MU) is passed.

It is possible to call up a subprogram with the instruction ON MCPOS which is
typical for cam controls if a specific master position (MU) has been passed in
positive or negative direction. This allows not only the realization of CAM boxes,
but also the execution of tasks that are much more complex. For example, one
could change parameters online depending on the position.

NB!:
A DEFMCPOS or a SETCURVE must always be placed in front of the command ON
MCPOS .. GOSUB, since otherwise the curve position is not known.

ON MIPOS .. GOSUB Call up a subprogram when the distance between two markers is reached.

This position interrupt looks at the distance between the last marker position and
the actual position. It is important that the SYNCMPULSM is set correctly. This
information is used for detection of overflow as well as for backward driving. In the
case of backward driving, the information used is (SYNCMPULSM + (MAPOS –
MIPOS)) instead of (MAPOS – MIPOS).

Portability ON POSINT handle overflow is available starting with MCO 5.00

Command Group INT

Cross Index SUBPROG .. RETURN, DISABLE .., ENABLE .., Priorities of Interrupts, ON DELETE ..
GOSUB, APOS, MAPOS, MIPOS, IPOS

Syntax Example 1 ON –apos 800 GOSUB name
 // Call up the subroutine name when slave position 800
 // is passed in negative direction

Syntax Example 2 SET SYNCMPULSS 20000 // distance between two markers
ON +ipos 5000 GOSUB prog1
ON +ipos 15000 GOSUB prog2

In this example, two markers have a distance of 20000qc. Let us assume that the
first marker is at position 0. Then prog1 will be called at 5000, 25000, 45000, and
so on, and prog2 will be executed at 15000, 35000, and so on.

Syntax Example 3 ON +mapos 1200 GOSUB name
 // Always call up subprogram at position 1200

Syntax Example 4 SET SYNCMPULSM 20000 // distance between two markers

ON +mipos 5000 GOSUB prog1
ON +mipos 15000 GOSUB prog2

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 75

 In this example two markers have a distance of 20000qc. Let us assume that the
first marker is at position 0. Then prog1 will be called at 5000, 25000, 45000, and
so on, and prog2 will be executed at 15000, 35000, and so on.

Syntax Example 5 Cardboard boxes are transported irregularly on a conveyor belt. By setting an
output, the slave will always be started when the position xxx is reached.

SUBMAINPROG // set subprogram output
 SUBPROG output
 OUT 3 1 // 03 on
 RETURN
ENDPROG
ON +MCPOS 4500 GOSUB output
// call subprogram output always on position 4500

 ON posint .. SETOUT (TOIN)

Summary Simulate a cam box (all types of POSINTs)

Syntax ON +/- type position SETOUT outno

ON +/- type position SETOUT outno TOIN inno

Parameter type = any POSINT
APOS
IPOS
MAPOS
MIPOS

position = depending on the command in user units [UU], or master user units
[MU], or curve units [CU]

outno = could be any valid output number (or the negative output number)

inno = could be any valid input number (or the negative input number)

Description All position interrupt functions can use this feature which simulates a cam box.
This is possible with all types of POSINTs.

In the first case, the output outno is either set or reset, depending on whether the
outno is positive or negative.

In the second form, the output is set to the value of the input inno. (Or to the
opposite of the input value, if either the inno or the outno is negative.). If both
outno and inno are negative, that is the same as if they both were positive.

The advantage of those commands is that they are handled in the background and
do not interrupt the application program. They are also faster than calling a
subroutine which in turn then sets an output. Typical reaction time is below 1 ms.

Portability Command is available starting with MCO 5.00

Command Group INT

Cross Index SUBPROG .. RETURN, APOS, IPOS, MAPOS, MCPOS, MIPOS

Syntax Example SET SYNCMPULSS 20000 // distance between two markers
on +ipos 500 setout 1 toin 2
on +ipos 1000 setout -1

In this example, the output 1 is set to the value of input 2 at a position of 500 user
units after the marker.

Then the output 1 is set to 0 again at a position of 1000 qc after the marker.

MCO 305 Command Reference
__ Command Reference __

76 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 ON STATBIT .. GOSUB

Summary Call up a subprogram when bit n of the FC 300 status is set.

Syntax ON STATBIT n GOSUB name

Parameter n = Bit n of the status word

 Byte 1 + 2 Status word of the FC300 (see FC3xx manual)
 Byte 3

 Bit 17 1 = MOVING
 Bit 18 1 = Overflow Slave Encoder
 Bit 19 1 = Overflow Master Encoder
 Bit 20 1 = POSFLOAT active *)
 Byte 4 SYNCSTAT
 Bit 25 1 = SYNCREADY
 Bit 26 1 = SYNCFAULT
 Bit 27 1 = SYNCACCURACY
 Bit 28 1 = SYNCMMHIT
 Bit 29 1 = SYNCSMHIT
 Bit 30 1 = SYNCMMERR
 Bit 31 1 = SYNCSMERR
 name = subroutine name

*) Explanation: i.e. the axis is within the tolerance range of the control window par.
32-71 REGWMAX / par. 32-72 REGWMIN. As soon as the control window is set, the
axis controller is switched on again.

Description The instruction ON STATBIT is used to call up a subprogram when bit n of FC 300
status is set. These 32 bits of the FC 300 status consist of the FC 300 status word,
the byte 3 of the internal status (e.g. MOVING) and the bit n of SYNCSTAT.

NB!:

– The subroutine to be called up must be defined within the SUBMAINPROG and
ENDPROG identified program.

– During the execution of a subroutine called by an interrupt NOWAIT is
automatically set to ON.

Priority If a number of interrupts occur simultaneously, the subprogram assigned to the
lowest bit is worked through first. The other interrupts will be processed after-
wards. If, during an interrupt subroutine, the same interrupt occurs (exception:
error interrupt), then it will be ignored and thus lost.

Command Group INT

Cross Index SUBPROG ..RETURN, DISABLE interrupts, ENABLE interrupts, Priorities of
Interrupts

Syntax Example ON STATBIT 30 GOSUB markererror /* Interrupt, if error flag Master */
SUBMAINPROG
 SUBPROG markererror
 SYNCSTATCLR 32 /* clear error flag SYNCMMERR */
 /* use value 32 of Parameter SYNCSTATCLR, not the bit-number! */
 RETURN
ENDPROG

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 77

 ON TIME

Summary One-time access of a subroutine.

Syntax ON TIME n GOSUB name

Parameter n = time in ms, after which the subroutine is called up (maximum MLONG)

name = name of the subroutine

Description After expiration of the time set the corresponding subroutine is called up. In the
meantime the program flow continues normally.

NB!:

– The precision with which the time is kept depends on the hardware used and
the remaining program. Typically the precision is ±1 ms.

– In General: The subroutine to be called up must be defined within the
SUBMAINPROG and ENDPROG identified program.

– During the execution of an ON TIME subroutine NOWAIT is set to ON.

Command Group INT

Cross Index ON PERIOD, GOSUB, DISABLE interrupts, ENABLE interrupts, Priorities of
Interrupts

Syntax Example OUT 1 1 /* light on */
ON TIME 200 GOSUB off1 /* light off again after 200 ms */
SUBMAINPROG
 SUBPROG off1
 OUT 1 0
 RETURN
ENDPROG

MCO 305 Command Reference
__ Command Reference __

78 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 OUT

Summary Set or re-set digital outputs.

Syntax OUT n s or
OUT X/n s

Parameter n = output number
MCO 305: 1 – 8 (6)
FC 312 outputs: 27
Relay outputs: 21 (relay 1) and 22 (relay 2), Note: FC 312 < 11 kW
only has relay 1.
MCB 105, relay outputs: X34/1 (relay 7), X34/5 (relay 8) and X34/10
(relay 9).

 or with CAN open I/O modules:
CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

X/n = terminal block / pin number

s = condition
0 = OFF
1 = ON

Description The 8 (6) digital outputs of the MCO 305 option, the digital and relay outputs of
FC 300, and the relay outputs of MCB 105 can be set and re-set by using the OUT
command.

The selection of the mode for output 7,8 is done by par. 33-60 IOMODE.

If the outputs are used NPN or PNP depends on the selection for the standard
FC 300 outputs set in par. 5-00.

CAN modules which fulfill the CAN OPEN specifications can also be addressed with
the IN command via the corresponding number, which is defined as follows:

CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules.

NB!:
If an illegal combination or a pin number is used for X/n, which can not be set,
then error 171 will be reported.
But there is no check if an input is used instead of an output or vice versa.

NB!:

– After switching on the system, all outputs are OFF.
These outputs, which have pre-defined functions according to the I/O parameter
settings, will also be influenced by the OUT commands!

– The actual output status remains as it is, even after program end or program
abort.

– The output circuit and maximum load current can be taken from MCO Operating
Instructions and the FC 300 Operating Instructions.

NB!:
The CAN commands operate with the pre-defined PDOs of CANopen. Don't change
these default settings (minimum capability device), otherwise the CAN commands
will not operate anymore.

Portability Set or reset CAN modules is available starting with MCO 5.00.

Command Group I/O

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 79

Cross Index OUTB, IN, INB,
Parameters: 33-60 Terminal X59/1 and X59/2 Mode, IOMODE, 33-63...70 Terminal
X59/n Digital Output, O_FUNCTION_n

Syntax Example OUT 3 1 // set output 3 on MCO 305 to 1
OUT 27 1 // set output 27 on FC 300 main board to 1
OUT X59/3 1 // set output 3 on MCO 305 to 1
OUT X34/1 1 // set first relay on relay option (relay 7) to 1

Program Sample OUT_01.M

 OUTAN

Summary Sets speed reference.

Syntax OUTAN v

Parameter v = bus reference

 range: –0X4000 – 0X4000 = –100 % – 100 %

Description The OUTAN command can set FC 300 bus reference (speed or torque reference
depending on setting of FC 300 par. 1-00).

With OUTAN it is also possible to turn off the controller in OPEN LOOP using MOTOR
OFF and to operate the FC 300 without feedback as a pure frequency converter. In
this manner you can use APOSS to directly output set values, to read inputs, etc.

NB!:
The command MOTOR OFF must be executed previously. Thus, monitoring of the
position error is no longer active.

Command Group I/O

Cross Index MOTOR OFF,
MCO 305 Operating Instructions, FC 300 Design Guide

Syntax Example MOTOR OFF /* turn off controller */
OUTAN 0X2000 /* set speed reference 50% */

MCO 305 Command Reference
__ Command Reference __

80 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 OUTB

Summary Alteration of the condition of a digital output byte

Syntax OUTB n v

Parameter n = output byte
0 = 1 – 8
1 = 27,29

 or with CAN open I/O modules:
CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

v = value (0 ... 255)

NB!:
Numbering of the bytes begins with 0; this is in contrast to the numbering of the
individual inputs, which starts with 1.

Description With the OUTB command the condition of the digital outputs can be changed byte-
by-byte. The byte value transferred determines the condition of the individual
outputs. The bit with the lowest value in the byte corresponds to the set condition
of output 1.

CAN modules which fulfill the CAN OPEN specifications can also be addressed with
the IN command via the corresponding number, which is defined as follows:

 CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules.

NB!:
After switching on the system, all outputs are OFF. Outputs which have pre-defined
functions according to the I/O parameter settings will also be influenced by the
OUTB command! The actual output status remains as it is even after program end
or program aborted.

Output circuit and maximum load current see MCO Operating Instructions.

NB!:
The CAN commands operate with the pre-defined PDOs of CAN-OPEN. Don't change
these default settings (minimum capability device), otherwise the CAN commands
will not operate anymore.

Portability The command OUTB for CAN modules is available starting with MCO 5.00.

Command Group I/O

Cross Index OUT, IN, INB,
Parameters: 33-63...70 Terminal X59/n Digital Output, O_FUNCTION_n

Syntax Examples OUTB 0 10 // switch through outputs 2 and 4, disable other outputs

OUTB 0 245 // disable outputs 2 and 4, switch through all other outputs

OUTB 0 128 // switch through output 8 only, disable others

OUTB 256 1 // set output 1 to CAN module 1

Program Sample OUTB_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 81

 OUTDA

Summary Sets FC 300 analog output.

Syntax OUTDA n v

Parameter n = output number (42)

 or with CAN open I/O modules:
CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

v = value (0 – 100000)

NB!:
Parameter 6-50 must be set to “MCO controlled”.

Description With the OUTDA command it is possible to control the analog output of the FC 300
control card. FC 300 has one analog output. It is configured via parameter 6-50.

A FC 300 control card output can only be controlled from the application program
when it is configured as option output in the appropriate parameter.

CAN modules which fulfill the CAN OPEN specifications can also be addressed with
the IN command via the corresponding number, which is defined as follows:

 CAN-Bus + (Module-CAN-ID * 256) + output number (or output byte)

When executing such a command the corresponding CAN objects are created
temporarily, evaluated and subsequently released. Thus, it is possible to address
any number of modules.

NB!:
The CAN commands operate with the pre-defined PDOs of CAN-OPEN. Don't change
these default settings (minimum capability device), otherwise the CAN commands
will not operate anymore.

Portability Set output for CAN modules is available starting with MCO 5.00.

Command Group I/O

Cross Index FC 300 Design Guide, parameter 6-50

Syntax Example /* condition: parameter 650 is set to "MCO controlled" */
OUTDA 42 50000 /* set FC 300 output to 10 mA */

MCO 305 Command Reference
__ Command Reference __

82 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 OUTMSG

Summary Sends a CAN message.

Syntax OUTMSG intval longval

Parameter intval Bytes 2 and 3 of the CAN-message
longval Bytes 4 and 7 of the CAN-message

Return Value –

Description Sends a CAN message (buffered). The CAN Id (CAN identification number) results
from the settings of the 'slaveno'.

OUTMSG always deals with objects which are 8 bytes long. Only bytes 2 to 7 are
intended for the user. Bytes 0 and 1 are reserved.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index INMSG, ON CANMSG, INAD

Syntax Example temperature = INAD 1
OUTMSG 20 temperature

 PCD

Summary Pseudo array for direct access to the field bus data area

Syntax PCD[n]

Parameter n = index

Description You can directly access the field bus data area with the command PCD without an
additional command COMOPTGET or COMOPTSEND. The communications memory is
written or read word by word (16-Bit).

NB!:
The parameters 9-15 and 9-16 must additionally to be set with the correct values.

Command Group Communication option

Cross Index COMOPTGET, COMOPTSEND, SYSVAR

Syntax Example Variable = PCD[1] // Word 1
Variable = PCD[1].2 // Bit 2 of Word 1
Variable = PCD[2].b1 // Byte 1 of Word 2
PCD[1] = Variable
PCD[1].3 = Variable

Syntax Example _IF (PCD[2]= = 256) THEN // compare value
_IF (PCD[3].2) THEN // is bit 2 of PCD3 high?

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 83

 PDO

Summary Pseudo array for direct access to the CANopen PDOs.

Syntax PDO[n]

Parameter n = 1001 for 1. PDO (first 4 bytes), 1002 for 1. PDO (next 4 bytes)

 2001 for 2. PDO (first 4 bytes), 2002 for 2. PDO (next 4 bytes)

 3001 for 3. PDO (first 4 bytes), 3002 for 3. PDO (next 4 bytes)

 4001 for 4. PDO (first 4 bytes), 4002 for 4. PDO (next 4 bytes)

 5001 for 5. PDO (Serial PDO supported)

Also supported out of compatibility reasons:

n = 1, 2 (1. PDO, first and second 4 Bytes)

The offset to read other PDOs is always 1000.

The next 4 bytes of a PDO are accessed by an offset of +1. Depending on the
system in use PDOs might hold even more than 8 bytes. The access to all
consecutive bytes is done in the same manner, e.g. 1001, 1002, 1003, 1004, etc.
The same scheme is valid for the “serial” PDO 5 (e.g. accessed by USB, RS232).

PDO Activation (enable / disable)

Just the PDO 1 (RxPDO = 0x200 + Node-ID / TxPDO = 0x180 + Node-ID) is
enabled by default according to the CANopen specification. If other PDOs are
required, these have to be enabled by direct setting the corresponding "Valid" bit
(0x1400 - 0x1404 resp. 0x1800 - 0x1804, subindex 1) or by the configuration of
mapped objects using the commands LINKSDO or LINKPDO, which set the "Valid"
bit of the corresponding PDO automatically.

CANopen PDO size

A CANopen PDO is always 8 bytes long; it can therefore hold a maximum of
8 objects.

PDO 5 (= "serial PDO") Size

The mailbox size of the PDO 5 can be up to approx. 250 Bytes. The PDO 5 is also
used by the oscilloscope tool of the APOSS development environment, therefore it
is recommended to use this PDO not in applications, that shall be debugged using
the oscilloscope tool later on.

Description The command PDO enables direct access to the CANopen data process objects.

During reading of a PDO (reaction to an incoming PDO) there are three
possibilities:

1. After the command LINKPDO, the incoming telegram will always be diverted in
the appropriate system variable. The “Valid” bit of the PDO is set automatically.

2. The program itself accesses and reads the PDO array.
3. Using ON COMBIT, a function is called up, as soon as the bit n of the PDO

changes.
 In the case of outgoing PDO, you should differentiate between two processes:

1. After the command LINKSDO the PDO will be written in as soon as the variable
changes. Cyclical update of the parameter every 10 ms. This default value can
be changed via SDO entry 0x1800 - 0x1804 subindex 5 in accordance with the
CAN Open specification. The “Valid” bit of the PDO is set automatically.

2. The command PDO writes directly in the outgoing PDO.

MCO 305 Command Reference
__ Command Reference __

84 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 The first PDO array element (e.g. PDO[1001]) contains the data bytes 1 - 4 of the
maximum possible 8 data bytes of the PDO in case of a CANopen PDO. The second
PDO array element (e.g. PDO[1002]) contains the data bytes 5 - 8. More PDO
array elements are just available for special systems or enhanced interfaces, e.g.
the “serial” PDO 5.

 Every PDO array element (e.g. PDO[1002, PDO[1002]) contains a 32-bit value. But
the byte order within the 32 bit value must be attended when evaluating. The best
way to check the corresponding location is with byte- (.b) or word-wise (.w) access
to the PDO array element.
PDO[1].b1 -> Byte 1 of PDO
PDO[1].b2 -> Byte 2 of PDO
PDO[1].b3 -> Byte 3 of PDO
PDO[1].b4 -> Byte 4 of PDO

PDO[2].b1 -> Byte 5 of PDO
PDO[2].b2 -> Byte 6 of PDO
PDO[2].b3 -> Byte 7 of PDO
PDO[2].b4 -> Byte 8 of PDO

NB!:
The commands LINKPDO and LINKSDO link an internal system variable of the
control unit directly to a PDO and set the “Valid” bit of this PDO.

Even when mapping was configured (by LINKPDO or LINKSDO), you can still
access the PDO by the PDO array elements. However, you must take into conside-
ration that only bytes should be directly written into the PDO-array, which are not
in use by the mapping configuration. Otherwise the integrity of data is not
guaranteed!

NB!:
As standard, a changed PDO content is automatically dispatched (asynchronous
operating mode). If this is not desired, then the SDO Index 0x1800 - 0x1804 sub-
index 2 can be set to another value (e.g. 254, instead of the standard 255).
Thereby, active sending no longer takes place automatically, but the PDO has to be
collected per remote frame instead.

 Of course, the PDO mapping can also be configured by a master device (e.g. PLC,
PC) using the standard CANopen procedures and the mapping objects 0x1600 –
0x1604 resp. 0x1A00 – 0x1A04. In that case only SDOs can be mapped, but none
of the internal control data, which can just be accessed by internal SYSVAR
numbers.

In the same manner, it is also possible to enable or disable the PDOs 1 - 5 by
modifying the “Valid” bit of the subindex 1 of the objects 0x1400 – 0x1404 resp.
0x1800 – 0x1804.

The subindices 2-5 of 0x1800 can be used to define transmission type, inhibit and
event time of the TxPDOs. The defined transmission type of the TxPDO is also used
for the RxPDO by MCO option units.

RxPDOs do not use extra CAN memory, but TxPDOs need one object per TxPDO, if
they are enabled, i.e. the “Valid” bit is set.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SYSVAR

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 85

Syntax Example Variable = PDO[1] // PDO data byte 1 - 4
Variable = PDO[1].2 // Bit 2 of PDO data byte 1 - 4
Variable = PDO[2].b1 // Byte 1 of PDO data byte 5 - 8
PDO[1] = Variable
PDO[1].3 = Variable

Program Sample IF (PDO [1] ==256) THEN // compare value
IF (PDO [2].2) THEN // Is Bit 1 of PDO data byte 5 - 8 high?

MCO 305 Command Reference
__ Command Reference __

86 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 PID

Summary Calculates PID filter.

Syntax u(n) = PID e(n)

Parameter e(n) = actual deviation (error) for which the PID filter should be used

Return Value u(n) = result of the PID calculation

Description A PID filter can be calculated with this function. The PID filter works according to
the following formula:

u(n) = (KP * e(n) + KD *(e(n)-e(n–1)) + KI*∑e(n)) / timer

 where the following is true:

e(n) error occurring at time n

KP proportional factor of the PID
control

KD Derivative Value

KI Integral Factor (limited by
Integration Limit)

timer controller sample time

KDER

+

++

KPROP

KINT

KILIM

u(n)e(n)

 The corresponding factors can be set with the following commands:
 SET PID KPROP 1 /* set KP 1 */
 SET PID KDER 1 /* set KD 1 */
 SET PID KINT 0 /* set KI 0 */
 SET PID KILIM 0 /* Integration limit 0 */
 SET PID TIMER 1 /* Sample time = 1 */
The following syntax example also show the default allocation of the factors.

Command Group SYS

Syntax Example e = INAD 53
u = PID e
PRINT "input = ",e, "output = ",u

 POSA

Summary Positioning in relation to actual zero point.

Syntax POSA p

Parameter p = Position in user units (UU) absolute to the actual zero point; the UU
corresponds in the standard setting the number of Quadcounts.

Description The axis can be moved to a position absolute to the actual zero position.

When the POSA command exceeds the Negative or Positive Software End Limit (para-
meters 33-41 or 33-42) the program continue with the next command after an error.

NB!:
If a temporary zero point, set via SETORIGIN, exists and is active, then the position
result refers to this zero point.

NB!:
If an acceleration and/or velocity have not been defined at the time of the POSA
command, then the procedure will take place with the values of parameters 32-84
Default Velocity and 32-85 Default Acceleration.

Command Group ABS

Cross Index VEL, ACC, POSR, HOME, DEFORIGIN, SETORIGIN
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator

Syntax Example POSA 50000 /* move axis to position 50000 */

Program Sample POS_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 87

 POSA CURVEPOS

Summary Move slave to the curve position corresponding to the master position

Syntax POSA CURVEPOS

Description This command acts like POSA and moves the slave to the corresponding position on
the curve, which is given by the actual master position.

NB!:
If a temporary zero point, set via SETORIGIN, exists and is active, then the position
result refers to this zero point.

NB!:
If an acceleration and/or velocity have not been defined at the time of the POSA
command, then the procedure will take place with the values of parameters 32-84
Default Velocity and 32-85 Default Acceleration.

Command Group ABS, CAM

Cross Index CURVEPOS, SETORIGIN

Syntax Example POSA CURVEPOS
// Move slave to the curve position corresponding to the master position

Sample Fix points of a curve:

Master Slave

0
500
700
1000

0
500
300
1200

Say the current master
position is 800 (the
darkened vertical line).

 Case 1: Current Master Position is 800 and current slave position is 200.
POSA CURVEPOS will move the slave to 450.

Case 2: Current Master Position is 800 and current slave position is 700.
POSA CURVEPOS will move the slave to 450.

 POSR

Summary Positioning in relation to actual position

Syntax POSR d

Parameter d = distance to actual position in user units (UU); this corresponds in the standard
setting to the number of Quadcounts.

Description The axis can be moved to a position relative to the actual position by use of the
POSR command.

NB!:
If acceleration and/or velocity has not been defined at the time of the POSR
command, then the procedure will take place with the values of parameters 32-84
Default Velocity and 32-85 Default Acceleration.

Command Group REL

Cross Index VEL, ACC, POSA,
Parameters: 32-12 User Unit Numerator, 32-11 User Unit Denominator

Syntax Example POSR 50000 /* move axis relative 50000 UU */

Program Sample POS_01.M

MCO 305 Command Reference
__ Command Reference __

88 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 PRINT

Summary Information output

Syntax PRINT i or PRINT i;

Parameter i = information, for example, variables, text, CHR (n) separated by commas.

The CHR command returns the ASCII characters corresponding to a certain
number.

Description Calculation results, variables contents and text information can be displayed on the
connected PC via the RS485 communication interface by use of the PRINT com-
mand, if the APOSS software is open and the connection active.

To obtain multiple data with a single PRINT command, the individual elements
must be separated with a comma (,). Text information must be given in quotation
marks (").

A line feed is normally created following each PRINT instruction. This automatic line
feed can be suppressed with a semi-colon (;) after the last output element.

Command Group SYS

Cross Index INKEY

Syntax Example PRINT "Information is important !" /* print text information */
PRINT "Information is important !"; /* print information without line feed */
variable = 10

PRINT variable /* print contents of variables */
PRINT APOS /* print returned value function */
PRINT "Variable", variable,"Pos.:",APOS /* print mixed information */

Program Sample Uses – see all Program Samples.

 PRINTDEV

Summary Stops information output

Syntax PRINTDEV nn printlist

Parameter nn = number for the print device
0 = Standard output
-1 = no output after that line
1 = CAN bus
2 = serial

printlist = normal argument for a print command

Description PRINTDEV can be used to disable all prints in a program without commenting them
out one by one.

NB!:
The instruction (-1) defines the standard device new and is immediately effective
for all PRINT commands, that do not hold a DEV.

Command Group SYS

Cross Index PRINT, INKEY

Syntax Example PRINTDEV –1 "start"

…
PRINT "normal print "
…
PRINTDEV 0 "now print again info"

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 89

 PULSACC

Summary Set acceleration for the virtual master.

Syntax PULSACC a

NB!:
Changes in the acceleration in PULSACC are only valid after the next PULSVEL
command.

Parameter a = acceleration in Hz/s

Description With PULSACC it is possible to set the acceleration/deceleration for the virtual
master (encoder output).

The virtual master signal simulates an encoder signal. To calculate the pulse
acceleration PULSACC the parameter Encoder Resolution, the master velocity and
the ramp times must be taken into consideration.

The signals generated are evaluated simultaneously as master input so that
MAPOS, MIPOS, etc. function as they would in an external master.

The virtual encoder signal can just be outputted, if a control unit with an encoder
output is in use. The actual port number of the encoder output depends on the
hardware. The configuration and activation of the virtual encoder (i.e. PULSACC
unequal 0) automatically configures the encoder port as an output.

PULSACC = 0 is the condition for switching off the virtual master mode, provided it
is followed by a PULSVEL command.

Command Group SYN

Cross Index PULSVEL

Example The virtual master signal should correspond to an encoder signal of
1024 counts/revolution. The maximum speed of 25 encoder revolutions/s should
be achieved in 1 s.

Hz/s 25600 counts/s² 25600

s 1

olutioncounts/rev 1024 counts/s 25

[s] t

[Hz] (PULSVEL) velocity pulse
 PULSACC

==

∗
=

Δ

Δ
=

MCO 305 Command Reference
__ Command Reference __

90 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 PULSVEL

Summary Set the velocity for the virtual master.

Syntax PULSVEL v

Parameter v = velocity in pulses per second (Hz)

Description With PULSVEL it is possible to set the velocity for the virtual master (encoder output).

The virtual master signal simulates an encoder signal. To calculate the pulse
velocity the parameters Encoder resolution and master velocity must be taken into
consideration.

Command Group SYN

Cross Index PULSACC

Example The virtual master signal should correspond to an encoder signal of
2048 counts /revolution within an encoder speed of 50 revolutions/s.

Hz 102400 Hz 50 2048
s

turns
 turnper countsencoder PULSVEL

=∗=

∗=

 REPEAT .. UNTIL ..

Summary Conditional loop with end criteria (Repeat ... until condition fulfilled)

Syntax REPEAT
UNTIL Condition

Parameter condition = Abort criteria

Description The REPEAT..UNTIL construction enables any number of repetitions of the enclosed
program section, dependent on abort criteria. The abort criteria consist of one or
more comparative procedures and are always checked at the end of a loop. As long
as the abort criteria are not fulfilled, the loop will be processed repeatedly.

NB!:
Because the abort criteria are checked at the end of the loop, the commands within
the loop will be carried out at least once.

To avoid the possibility of an endless loop, the processed commands within the loop
must have a direct or indirect influence on the result of the abort monitoring.

Command Group CON

Cross Index LOOP, WHILE . . DO . . ENDWHILE

Syntax Example REPEAT /* start loop */
 command line 1
 command line n
UNTIL (A != 1) /* Abort condition */

Program Sample REPEA_01.M, DIM_01.M, ONINT_01.M, OUT_01.M, INKEY_01.M

 RSTORIGIN

Summary Erase temporary zero point

Syntax RSTORIGIN

Description A previously with SETORIGIN set temporary zero point can be erased by use of the
RSTORIGIN command. This means that all the following absolute positioning
commands (POSA) again refer to the real zero point.

Command Group INI

Cross Index SETORIGIN, DEFORIGIN, POSA

Syntax Example RSTORIGIN /* reset temporary zero point */

Program Sample TORIG_01.M, OUT_01.M, VEL_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 91

 SAVE part

Summary Save arrays or parameters in the EPROM

Syntax SAVE part

part = ARRAYS, AXPARS, GLBPARS, or USRPARS

Description If array elements or parameters are altered while the program is running the
altered values can be saved individually in the EPROM with these commands:

SAVE GLBPARS saves the range of global parameters (group 30-5* and group 33-
8*), and application parameters (group 19-**) in the EPROM.

SAVE AXPARS saves all other axes parameters.

SAVE USRPARS saves only application parameters (group 19-**).

NB!:
The EPROM can only handle execution of this command up to 10000 times.

Command Group INI

Cross Index DELETE ARRAYS, SAVEPROM

 SAVEPROM

Summary saves memory in EPROM

Syntax SAVEPROM

Description When changing array elements or application parameters (group 19-**) while the
program is running SAVEPROM offer the possibility of saving the values which have
been changed. This must be done by triggering the command SAVEPROM explicitly.

SAVEPROM triggers the same process, which can also be started in the menu
Controller.

If you want to save only array elements or only global and application parameters,
use the corresponding commands SAVE .. ARRAY, GLBPAR, or USRPARS.

NB!:
The execution time of SAVEPROM depends on the amount of data to be saved. It
can be up to 4 seconds.

NB!:
Please note that the MCO parameters (group 32-** and 33-**) are not saved by
SAVEPROM. To do this you must use the command SAVE AXPARS.

NB!:
The EPROM can only handle execution of this command up to 10000 times.

Command Group INI

Syntax Example PRINT "please wait"
SAVEPROM
PRINT "Thanks"

MCO 305 Command Reference
__ Command Reference __

92 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SDOREAD

Summary Reads SDO of a connected CANopen device.

Syntax val = SDOREAD id index sub

Parameter id = CAN id (1…127)
-id = executes the command without waiting for the answer

index = index of object (0x0000…0xFFFF)

sub = sub index (0x00 – 0xFF)

Return Value value of the SDO with index and sub index

Description This command allows reading SDO of a connected CANopen device.

After doing the SDO read, the value is given back in val. In case of problems an
APOSS error will be reported.

It is possible to call SDOREAD with negative CAN-Id numbers. Then the command
is executed but it will not wait for the answer. However, SDOREAD does not return
a meaningful result in such a case. Therefore use SDOSTATE to check the result of
an active communication.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SDOWRITE, SDOSTATE

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 93

 SDOREADSEG

Summary Segmented read of SDOs (unpacked).

Syntax res = SDOREADSEG id, index, subindex, arrayname

Parameter id = CAN id number
-id = führt den Befehl ohne Warten auf eine Antwort aus

index = 0x2000

subindex = parameter number

arrayname = name of a existing array

Return Value value in the array given as parameter: 1 byte in 1 array element

Description The command allows segmented read of unpacked SDOs. This is especially useful
for strings or binary data.

SDOREADSEG does a segmented read (if possible) and delivers the result in the
array given as parameter. This array contains one byte of the segmented data
(character) in one array element. See the example below of an SDOREAD with
waiting and unpacked.

The command can be used with waiting for result and producing an error if some-
thing goes wrong, or without waiting and not producing errors. In the second case,
the result must be checked by the SDOSTATE command. For results, see there.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SDOREAD, SDOSTATE

Example DIM test[20]
id = 3
// Routine to read a string
// thereby the array contains only one character per element
long printstring (long[] arr, long len)
{
 long ind
 ind = 1
 WHILE(ind <= len) DO
 PRINT chr(arr[ind]);
 ind++
 ENDWHILE
 PRINT " "
}

// Test segmented SDO unpacked with waiting
PRINT ""
PRINT "Test segmented SDO unpacked with waiting "
subindex = 1549 // Sw Version
value = SDOREADSEG id, 0x2000, subindex, test
PRINT "number characters ",value
printstring(test,value)

MCO 305 Command Reference
__ Command Reference __

94 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SDOREADSEGP

Summary Segmented read of SDOs (packed).

Syntax res = SDOREADSEGP id, index, subindex, arrayname

Parameter id = CAN id number
-id = führt den Befehl ohne Warten auf eine Antwort aus

index = 0x2000

subindex = parameter number

arrayname = name of a existing array

Return Value value in the array given as parameter: 4 bytes in 1 array element

Description The command allows segmented read of unpacked SDOs. This is especially useful
for strings or binary data.

SDOREADSEGP does a segmented read (if possible) and delivers the result packed
in the array given as parameter. The command SDOREADSEGP packs the bytes
into the array elements. That means every array element contains four bytes. See
the example below of a packed read without waiting.

The command can be used with waiting for result and producing an error if some-
thing goes wrong, or without waiting and not producing errors. In the second case,
the result must be checked by the SDOSTATE command. For results, see there.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SDOREAD, SDOSTATE

Example DIM test[20]
vltid = 3
// Routine to dump a packed string
// thereby each element contains max 4 characters
long printpackedstring (long[] arr, long len)
{
 long ind,cc,rel
 ind = 1
 cc = 1
 WHILE(cc <= len) DO
 ind = ((cc-1) % 4) + 1
 rel = ((cc-1) mod 4) + 1
 PRINT chr(arr[ind].b rel);
 cc++
 ENDWHILE
 PRINT " "
}

// Test of the segmented SDO packed without waiting
PRINT ""
PRINT "Segmented SDO with SdoReadSegP packed without waiting"
para = 1549
res = 0
value = SDOREADSEGP -vltid, (0x2000 + para), 0, test
WHILE(value == 0) DO
 value = SDOSTATE vltid res
ENDWHILE
IF(value > 0) THEN
 PRINT "Parameter ",para," has the length ",res
 printpackedstring(test,res)
ELSE
 PRINT "Read of ",para," failed - error ",value
ENDIF

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 95

 SDOSTATE

Summary Checks the result of an active communication.

Syntax res = SDOSTATE id value

Parameter id = CAN id

value = additional return value, whose meaning depends of the return value “res”

Return Value 0 = id is busy, waiting for answer
1 = answer arrived, result available in value
2 = segmented read complete, data is in the array, number of bytes received

is in value

 -2 = timeout occurred while waiting for answer value = (index << 8 +
subindex)

-12 = CAN-Error occurred (bus error) (will be reset internally)
-xx = internal errors in firmware

 -33 = id not in use (id is free for new communication)
-50 = SDO was aborted by slave, SDO abort code is available in value
-51 = array was too small for the segmented read (minimum size in value)
-52 = toggle bit error in segmented transfer
-53 = too much data came in (more than stated in the SDOREAD)
-54 = not enough data received when done was detected.
-55 = array write error in segmented read

Description It is possible to call SDOREAD or SDOWRITE with negative Can-Id numbers. In
such a case, the command is executed but it will not wait for the answer. However,
SDOREAD does not return a meaningful result in such a case.

Therefore SDOSTATE allows a check for the result of an active communication.
SDOSTATE returns 0 as long as communication is busy. It returns negative results
in the case of an error (TIMEOUT, SDO-Abort, ..). If SDOSTATE returns a positive
result, the last SDO command was completed successful. If the last command was
an SDOREAD, the SDOSTATE will return the result in the parameter value.

It is possible to start several transactions (up to 5) to different IDs in parallel. (Of
course not with the same ID). For example, three SDOREADS can be send out to
IDs 1,2,3 and then poll for the results.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SDOWRITE, SDOREAD

Syntax Example id = 1
value = 0
res = SDOREAD -id idx subidx
WHILE(erg == 0) DO
 res = SDOSTATE id value
ENDWHILE
IF(res > 0) THEN
 // use value as result of the SDOREAD
ELSE
 // handle the error case
ENDIF

MCO 305 Command Reference
__ Command Reference __

96 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SDOWRITE

Summary Sets SDO of a connected CAN-open device.

Syntax SDOWRITE id index sub val

Parameter id = CAN id (1…127)
-id = executes the command without waiting for the answer

index = index of object (0x0000…0xFFFF)

sub = sub index (0x00 … 0xFF)

val = parameter value

Return Value –

Description This command allows writing a SDO to a connected CAN-open device.

After doing the SDO write, the value in 'val' is written to the corresponding object.
In case of problems an APOSS error will be reported.

It is possible to call SDOWRITE with negative CAN-Id numbers. Then the
command is executed but it will not wait for the answer. However, SDOWRITE does
not return a meaningful result in such a case. Therefore use SDOSTATE. to check
the result of an active communication.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Cross Index SDOREAD, SDOSTATE.

Syntax Example SDOWRITE 127 0x2300 2 3000 // sets max. velocity to 3000 rpm

 SET

Summary sets a parameter

Syntax SET par v

Parameter par = Parameter identification
v = parameter value

Description With the SET command parameters can be temporarily changed while the program
is running.

The parameter codes permitted can be found in chapter “Parameter Reference” in
the MCO 305 Design Guide.

NB!:
The parameter alterations are only valid while the program is running. After pro-
gram end or abort, the original parameter values are valid again.
The parameter alterations can be made permanent by using the command
SAVEPROM.

Command Group PAR

Portability SET I_xxx commands will still work and automatically be transferred into the new
I_FUNCTION parameters.

Cross Index GET, Parameter Reference

Syntax Examples SET POSLIMIT 100000 /* set positive positioning limit */

SET KPROP 150 /* change proportional factor */

SET PRGPAR 2 /* change activated program number */

SET I_FUNCTION_9_n /* previously the command SET I_BREAK */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 97

 SETCURVE

Summary Sets CAM curve.

Syntax SETCURVE array

Parameter array = name of the array or of the curve

Description SETCURVE defines the actual used curve, which is described in 'array'. This
command has to be used, before the commands CURVEPOS, SYNCCxx,
SYNCCSTART, or SYNCCSTOP can be used.

When this command is executed, the necessary pre calculations are done.

See CAM extensions and new curve types in section Curve Arrays and Curve Types.

NB!:
The DIM instruction with the name of the curve or array and the number of array
elements must stand in front of the command SETCURVE or at the beginning of the
program. If there are several arrays or curves in the zbc (or cnf) file, then the order
in the DIM instruction must match the order of the arrays in the zbc-file.

NB!:
If SYNCC is not active:

If SETCURVE is used while SYNCC is not active, then SETCURVE will reset the curve
master position depending on the actual master position. That means,
CMASTERCPOS (SYSVAR 4230) is calculated out of MAPOS. This position is not
longer reset by SYNCC. This Position can only be reset by a DEFMCPOS or by a new
SETCURVE outside of SYNCC-mode.

If SYNCC is active:

If SETCURVE is used while SYNCC is active, the CMASTERCPOS will not be changed.
All other parameters like 32-11 User Unit Denominator, 32-12 UU Numerator, 33-
23 Start Behavior for Sync., 33-15 and 33-16 Marker Number for Master and for
Slave, 33-17 and 33-18 Master and Slave Marker Distance, 33-21 and 33-22
Master and Slave Marker Tolerance Window, and all Curve-Array information will be
updated, after the next restart of the curve.

While SYNCC is active, the only way to influence the CMASTERCPOS is a DEFMCPOS
(which is executed with next restart of curve) or MOVESYNCORIGN which is
executed immediately.

CMASTERCPOS (SYSVAR) and CURVEPOS are now updated even if SYNCC is no
longer active. The update of these values will be started after a SETCURVE
command (if SYNCMSTART is < 2000) or after SYNCC and the first master marker
(if SYNCMSTART = 2000).

NB!:
Transferring the array to the DSP may take some ms. A curve array of 900 values
will take around 40 ms. For that reason the maximum array size is 2000. (Most
curves have not more than some hundred values.)

 See also illustration Curve Array in chapter Technical Reference.

Portability CAM enhancements and new types of fix points are available starting with
MCO 5.00. With MCO 5.00 no interpolation points are used anymore.

Command Group PAR

Cross Index DIM, CMASTERCPOS (see axis process data), CURVEPOS,
Curve Arrays and Curve Types in „Array Structure of CAM Profiles” in chapter
Technical Reference

Syntax Example DIM curve [280]
// See number of elements in the title bar of the CAM-Editor
SETCURVE curve

MCO 305 Command Reference
__ Command Reference __

98 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SETMORIGIN

Summary Set any position as the zero point for the master.

Syntax SETMORIGIN value

Parameter value = absolute position

Description With the SETMORIGIN command you can set any position as the new zero point for
the master.

NB!:
The command SETMORIGIN cancels the command DEFMORIGIN.

NB!:
Thus, to alter the zero point for the master again, you have to reset it with
SETMORIGIN or DEFMORIGIN. RSTORIGIN does not have any effect on the zero
point for the master.

Command Group INI

Cross Index DEFMORIGIN, MAPOS

Syntax Example SETMORIGIN 10000 /* Set the zero point for the master at 10000 */

 SETORIGIN

Summary Set absolute position as temporary zero point

Syntax SETORIGIN p

Parameter p = absolute position in relation to the real zero point

Description Any absolute position can temporarily be set as a new reference point for absolute
positioning command (POSA) by use of the SETORIGIN command. This position is
called temporary zero point.

In combination with the command CURVEPOS, one can fix in this way that the
current slave position matches the corresponding value of the curve.

NB!:
It is possible to carry out several SETORIGIN commands without carrying out a
previous RSTORIGIN. The absolute position value always refers to the real zero
point. The last carried out SETORIGIN command therefore determines the position
of the temporary zero point in relation to the real zero point.

Command Group INI

Cross Index RSTORIGIN, DEFORIGIN, POSA, CURVEPOS

Syntax Example SETORIGIN 50000 /* set temporary zero point to 50000 */

Syntax Example SETORIGIN (–CURVEPOS)
 // Set temporary zero to the beginning of the curve

Program Sample TORIG_01.M, OUT_01.M, VEL_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 99

 SETVLT

Summary Sets a FC 300 parameter

Syntax SETVLT par v

Parameter par = parameter number
v = parameter value

Description With the SETVLT command FC 300 parameters can be changed temporarily and
thus the configuration of the FC 300 can also be changed temporarily.

Since only integer values can be transmitted the parameter value to be transmitted
must be adjusted with the associated conversion index.

A list of the FC 300 parameters with the corresponding conversion index can be
found in the FC 300 manual.

NB!:
The parameter alterations are only stored in RAM. After power down the original
parameter values are restored.

Command Group PAR

Cross Index GETVLT

Syntax Example /* change par. 3-03 "maximum reference" high to 60 Hz */
/* -Conversion index = -3 (Multiplied with 10³ during transmission) */
SETVLT 303 60000

 SETVLTSUB

Summary Sets a FC 300 parameter with index number.

Syntax SETVLTSUB par indxno v

Parameter par = parameter number

indxno = index number

v = parameter value

Description With the SETVLT commands FC 300 parameters can be changed temporarily and
thus the configuration of the FC 300 can also be changed temporarily, in this case
parameters with index numbers too.

Since only integer values can be transmitted the parameter value to be transmitted
must be adjusted with the associated conversion index.

A list of these parameters with the corresponding conversion index can be found in
the FC 300 manual.

NB!:
The parameter alterations are only stored in RAM. After power down the original
parameter values are restored.

Command Group PAR

Cross Index GETVLTSUB

Syntax Example SETVLT 025 1 100
 // sets index 1 of the par. 0-25 "Quick menu" to 100 "configuration"

MCO 305 Command Reference
__ Command Reference __

100 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 STAT

Summary Query axis and control status.

Syntax res = STAT

Return Value res = Axis and Control status (4-Byte value):

Byte 3 MSB

 Bit 0 1 = MOVING
 Bit 1 1 = OVERFLOW Slave Encoder
 Bit 2 1 = OVERFLOW Master Encoder
 Bit 3 1 = POSFLOAT active *)

Byte 2 Status byte of axis control

 Bit 7 1 = axis control switched off
 Bit 2 1 = position reached
 Bit 0,1,3-6 has no meaning

Byte 1 not used

Byte 0 LSB
 Bit 7 1 = limit switch active
 Bit 6 1 = Reference switch active
 Bit 5 1 = Start switch active
 Bit 2 1 = axis control switched off
 Bit 0,1,3,4 not in use

 *) Explanation: i.e. the axis is within the tolerance range of the control window
REGWINMAX / REGWINMIN. As soon as the control window is set, the axis
controller is switched on again.

SYSVAR 4258 PFG_LASTERROR gives more information about the type of error.

Description The STAT command reports the actual status, of the axis control unit as well as
that of the axis. For example, whether the axis controller shuts down, ends the
motion or the end switch is active. The status of the program execution cannot be
called up with STAT, but only with AXEND.

Command Group SYS

Cross Index AXEND

Syntax Example PRINT STAT /* print status word */

Program Sample STAT_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 101

 SUBMAINPROG .. ENDPROG

Summary Subroutine section definition

Syntax SUBMAINPROG
ENDPROG

Description The code word SUBMAINPROG begins the subroutine section, and the code word
ENDPROG ends this specific program. The term subroutine means command
sequences that, via the GOSUB instructions, can be called up and executed from
various program positions.

All necessary subroutines must be contained within the subroutine section. It is
possible to insert a subroutine anywhere within a main program; however, for rea-
sons of clarity, it is advisable to insert it either at the beginning or end of a program.

NB!:
Only one subroutine area may be inserted within a program.

Command Group CON

Cross Index SUBPROG .. RETURN, GOSUB, ON ERROR GOSUB, ON INT n GOSUB

Syntax Example SUBMAINPROG /* Begin the subroutine section */
 subroutine 1
 subroutine n
ENDPROG /* End the subroutine section */

Program Sample GOSUB_01.M, AXEND_01.M, ERROR_01.M, INCL_01.M, STAT_01.M

 SUBPROG name .. RETURN

Summary Subroutine definition

Syntax SUBPROG name
RETURN

Parameter name = subroutine name

Description The instruction SUBPROG identifies the beginning of a subroutine. The name of the sub-
routine must directly follow SUBPROG code word. The name can be made up of one or
more characters, and must be unique, i.e. only one subroutine may have that name.

A subroutine can be called up and executed at any time by use of a GOSUB instruction.

A subroutine can have any number of command lines and can refer to all program
variables. The last command in each subroutine must be the RETURN instruction,
which permits exiting the subroutine and continuing the program with the
command following the GOSUB instruction.

NB!:
All subroutines must be contained within the SUBMAINPROG and ENDPROG defined
areas. It is not admissible to declare a second subroutine within an existing sub-
routine.

Command Group CON

Cross Index SUBMAINPROG .. ENDPROG, GOSUB, ON ERROR GOSUB, ON INT .. n GOSUB

Syntax Example SUBMAINPROG /* begin SP-section */
 SUBPROG sp1 /* begin sp1 */
 command line 1
 command line n
RETURN /* end sp1 */
ENDPROG /* end SP-section */

Program Sample GOSUB_01.M, AXEND_01.M, ERROR_01.M, IF_01.M, STAT_01.M

MCO 305 Command Reference
__ Command Reference __

102 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYNCC

Summary Synchronization in CAM-Mode

Syntax SYNCC num

Parameter num = number of curves to be processed;
0 = the drive remains in CAM-Mode until another mode is started with
commands such as MOTOR STOP, CSTART, POSA, etc.

 < 0 = starts SYNCC without resetting the markers

Description The command SYNCC starts the CAM-Mode (CAM control). From this moment, the
curve positions of the master are counted depending on the actual master
positions and the defined starting behavior in par. 33-23 Start Behavior for Sync:
Where and when counting is started. With the parameter SYNCMSTART = 2000,
the curve positions of the master are only counted after the next master marker.

NB!:
SYNCC does not start the slave drive nor does it interrupt on-going motions (e.g.
CVEL), only SYNCCSTART does.

NB!:
The drive remains in CAM-Mode until num curves have been processed success-
fully.

If the synchronization (after num curves) is being closed normally, the start stop
point pair 2 will be used – if no SYNCCSTOP with a corresponding point pair is
defined – in order to stop the drive. It will then come to a stop at the position
slavepos (see parameters).

 SYNCC can be started with a negative number. This will start SYNCC without
resetting the markers. The negative number will then be reduced by one before the
absolute value is used as Count. This continues to allow the usage of counts.

Portability Using with negative numbers to start is available starting with MCO 5.00.

Command Group CAM

Cross Index SYNCCSTART, CAM-Editor

Syntax Example DIM curve [280] // see number of elements in the title bar of the CAM-Editor
SETCURVE curve // Set curve
SYNCC // Synchronization in CAM-Mode

Fix points of a curve:

Master Slave

0
500
700
1000

0
500
300
1200

Sample

 Hence in SYNCC 1 command thus locks the slave and master position as per the
array.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 103

MCO 305 Command Reference
__ Command Reference __

104 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYNCCMM

Summary Synchronization in CAM-Mode with master marker correction

Syntax SYNCCMM num

Parameter num = number of curves to be processed;

 0 = the drive remains in CAM-Mode until another mode is started with
commands such as MOTOR STOP, CSTART, POSA, etc.

Description Like SYNCC, the command SYNCCMM brings about synchronization in CAM-Mode,
but beyond that it also performs a marker correction (only if the master moves
forward).

In order to save the distance between sensor and processing point, the par. 33-17
Master Marker Distance is used. It allows the correction of the marker position
without changing the curve. Also, larger sensor distances than the actual curve
length are possible. In this case, a FIFO is used for the marker correction (see
example).

The marker can be the zero pulse of the encoder or an external 24 V signal.

NB!:
SYNCCMM does not start the slave drive nor does it interrupt on-going motions
(e.g. CVEL), only SYNCCSTART does.

NB!:
The drive remains in CAM-Mode until 'num' curves have been processed
successfully.

If the synchronization (after 'num' curves) is being closed normally, the start stop
point pair 2 will be used – if no SYNCCSTOP with a corresponding point pair is
defined – in order to stop the drive. It will then come to a stop at the position
slavepos (see parameters).

Command Group CAM

Cross Index par. 33-17 Master Marker Distance

Syntax Example SETCURVE curve
SYNCCMM 1 // Synchronize 1 x in CAM mode with marker correction

Sample If for example curve length is 3000 and distance of sensor to working point is
13000, we will have a FIFO with 4 Register and an offset of 1000 which has to be
concerned. See the following diagram

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 105

 SYNCCMS

Summary Synchronization in CAM-Mode with slave marker correction.

Syntax SYNCCMS num

Parameter num = number of curves to be processed;

 0 = the drive remains in CAM-Mode until another mode is started with
commands such as MOTOR STOP, CSTART,, POSA, etc.

Description Like SYNCC, the command SYNCCMS brings about a synchronization in CAM-Mode,
but beyond that it also performs a marker correction of the slave. Here, the slave
position is corrected, not the curve position.

In contrast to SYNCCMM, no FIFO is created.

The marker can be the zero pulse of the encoder or an external 24 V signal.

NB!:
SYNCCMS does not start the slave drive nor does it interrupt on-going motions
(e.g. CVEL), only SYNCCSTART does.

NB!:
The drive remains in CAM-Mode until 'num' curves have been processed successfully.

If the synchronization (after 'num' curves) is being closed normally, the start stop
point pair 2 will be used – if no SYNCCSTOP with a corresponding point pair is
defined – in order to stop the drive. It will then come to a stop at the position
'slavepos' (see parameters).

Command Group CAM

Cross Index Par. 33-18 Slave Marker Distance

Syntax Example SETCURVE curve
SYNCCMS 0 // Synchronization in CAM-Mode with slave marker correction

 SYNCCSTART

Summary Start slave for synchronization in CAM-Mode

Syntax SYNCCSTART pnum

Parameter pnum = Start stop points number

 pnum > 0 Engaging begins when the corresponding point A is reached, provided
the master moves in positive direction; the engage curve is finished at
point B. If point A and B are identical, the slave will be engaged with
the set maximum velocity – i.e. without curve – as soon as the master
has reached this point.

pnum = 0 The slave will be engaged immediately with the set maximum velocity.
It does not matter in what direction the master moves or whether it
moves at all.

pnum < 0 Again, the corresponding point pair is used, however, engaging begins
at point B and is finished at point A, i.e. in negative direction.

Description The command starts the movement of the slave. With pnum, the point pair is
selected that determines in which master position the synchronization begins and
where it should be finished.

When moving forward, the synchronization begins at point A and is finished up to
point B. When moving backward, it begins at point B and is finished up to point A.

Command Group CAM

Cross Index SETCURVE, Start-Stop-Points

Syntax Example SETCURVE curve
SYNCC 0 // CAM mode synchronization
SYNCCSTART 1 // Engage slave at point A from start stop point pair 1

MCO 305 Command Reference
__ Command Reference __

106 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYNCCSTOP

Summary Stop slave after the CAM synchronization

Syntax SYNCCSTOP pnum slavepos

Parameter pnum = Start stop points number

 pnum > 0 Engaging begins when the corresponding point A is reached, provided
the master moves in positive direction; the engage curve is finished
at point B.
If point A and B are identical, the slave will be engaged with the set
maximum velocity – i.e. without curve – as soon as the master has
reached this point.

pnum = 0 The slave will be engaged immediately with the set maximum
velocity. It does not matter in what direction the master moves or
whether it moves at all.

pnum < 0 Again, the corresponding point pair is used, however, engaging
begins at point B and is finished at point A, i.e. in negative direction.

 slavepos = Position where the slave is supposed to stand after disengaging.

NB!:
When moving forward, disengaging begins at point A and is finished at point B;
vice versa when moving backward.

NB!:
If the program is closed without SYNCCSTOP command, disengaging occurs by
default with the second point pair and a stop occurs at the Slave Stop Position
defined in the Curve Data.

Description This command stops synchronization without leaving SYNCC mode. The slave will
be disengaged according to the point pair defined in pnum. Only then will the slave
actually be stopped. When the stop point has been reached, the slave must be at
slavepos.

Command Group CAM

Cross Index Slave-Stop-Position

Syntax Example SETCURVE curve
SYNCC 0 // Synchronize in CAM-Mode
SYNCCSTART 1 // Start slave with start point pair 1
SYNCCSTOP 2 0
 // Stop slave with stop point pair 2 at the slave position 0 or 3600

Sample

Conveyor belt

= Master

Stamping roller = Slave

Master positions

[1/10 mm]

e
7
5
M

D
0
0
1
.1

0

Area where master and slave

must be in sync

Slave positions [degrees]

stamp beginning 120°, end 240°

40000 25001500

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 107

 SYNCERR

Summary Queries actual synchronization error of the slave

Syntax res = SYNCERR

Return Value res = actual synchronization error of the slave in UU and

a) as an absolute value when the value of the accuracy window is defined with
a plus sign in the parameter SYNCACCURACY;

 b) with polarity sign when in SYNCACCURACY the value of the window is
defined with a minus sign.

Description SYNCERR returns the actual synchronization error in User Units UU. This is the
distance between the actual master position (converted with drive factor and
offset) and the actual position of the slave.

If the par. 33-13 SYNCACCURACY is defined by a minus sign, you can also
determine whether the synchronization is running ahead (negative result) or
running behind (positive result).

NB!:
Up to option card version < 5.00: SYNCERR only functions in synchronization
mode. As soon as you exit SYNCM or SYNCP, the pulses are no longer counted.
SYNCERR is only updated within a SYNC command.

With option card software 5.00 onwards the SYNCERR is also updated when SYNCP
or SYNCM are not longer active, e.g. after a MOTOR STOP.

Command Group I/O

Cross Index TRACKERR, MAPOS, APOS,
Parameters: 33-12 Position Offset for Synchronization (SYNCPOSOFFS), 33-10 and
33-11 Synchronization Factor Master and Slave, 33-13 Accuracy Window for
Position Sync. (SYNCACCURACY)

Syntax Example PRINT SYNCERR /* query actual synchronization error of the slave */

Samples SYNCACCURACY = 1000

Here the SYNCERR returns the
absolute value 700.

 SYNCACCURACY = 1000

SYNCERR will display the absolute
value 700 even though the slave is
ahead of master.

Here the SYNCERR returns the value
of –700 showing that the slave is
ahead of master.

MCO 305 Command Reference
__ Command Reference __

108 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYNCM

Summary Angle/position synchronization with the master with marker correction

Syntax SYNCM

Description The SYNCM command functions just like the SYNCP command by making an
angle/position synchronization with the master, but also makes a marker correct-
ion. Thus, during the starting of synchronization the program is synchronized to
the next marker calculated. In this manner it is possible to compensate for
differing running behaviors, for example slippage.

If RAMPTYPE >= 2, then synchronization is started with limited jerk. This only
concerns the start; reaching the master velocity still looks like a trapezoid. This
helps smoothen the start procedure in the case of heavy loads or fragile mechanics.

Once synchronization has been completed, deviation is determined at every
marker (or every n-th marker if the number of markers is not identical for the
master and slave). This is input into the control as the new offset and the program
immediately attempts to compensate for this. However, in doing so the values set
for velocity VEL, and acceleration ACC or DEC are not exceeded.

NB!:
In addition to the parameters used by SYNCP, par. 33-25 SYNCREADY, and par. 33-
24 SYNCFAULT are also of significance.

NB!:
Since the following parameters could lead to overdefinition, it is important to
ensure that these values are logical, match one another, and are consistent with
the information on the gear factors.

par. 33-15, 33-16 Marker Number for Master and for Slave
par. 33-17, 33-18 Master Marker and Slave Marker Distance
par. 33-19, 33-20 Master and Slave Marker Type

NB!:
SYNCM should only be called up once since the synchronizing continues until the
next motion or stop command. All additional SYNCM commands cause the synchro-
nization to start over again from the beginning and this is not normally intended,
as you reset the actual SYNCERR.

NB!:
When defined in par. 33-23 Start Behavior for Sync., the system waits for the first
evaluation of the marker pulses on starting SYNCM and only then the offset par.
33-12 Position Offset for Synchronization is applied.

Marker Signal The marker can be the zero pulse from the encoder or an external 24 volt signal
(I5 = master; I6 = slave).

Portability Start behavior if RAMPTYPE >= 2 is available starting with MCO 5.00.

Command Group SYN

Syntax Example SYNCM /* synchronization of the position with marker correction */

Example

Even when both belts are running synchronously the lids may not be aligned with the
boxes at the right time. With SYNCM the difference between master and slave is detec-
ted by means of the external markers and the possible position deviation is corrected.

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 109

 SYNCMARKERSTART

Summary Resets a marker or resets marker handling.

Syntax SYNCMARKERSTART restarttype

Parameter restarttype = 0 or 1

Return Value –

Description This command replaces the SYNCMFPAR 64 functionality. In newer applications this
command should be used instead of parameter SYNCMFPAR 64.

 restarttype = 0

This command does a marker reset which means

− Clears the flags (PG_FLAG_SYNCMMERR, PG_FLAG_SYNCSMERR)
− Resets the SyncWindow, the correction values, the gear correction, the faked

counts
− Resets illegal counts, filtered marker distances, deviation values and all

Mfilters.
− Sets two Flags (SYN_ACCEPTNXTM, SYN_ACCEPTNXTS) in SYNCSTART

This will lead to the following result.

− Next master and next slave marker are accepted in all cases.
− Correction is calculated corresponding to the actual value of SYNCMSTART
− The resulting correction will be handled as a start correction
− The n:m relation of the markers should be kept (if possible).
− Marker Windows are reset corresponding to the parameter values
− All filters restart with default values.

This command also starts marker handling if not already active.

This command can be used to start marker handling outside of SYNCM. (Former
SYNCMFPAR – 64 functionality).

It also can be used to restart a running SYNCM without loosing n:m relation.

restarttype = 1

A real Reset of the marker handling will be done. That means that as well as the
things described in Marker Restart, we also reset the following values

Markercounts – that means a n:m relation will be lost

SYNCMSTART is reevaluated. This will possibly result in a new start sequence if
SYNCM is active.

SYNCSTART is set to start condition. That means all flags are set like SYN_START +
SYN_NOSLAVE + SYN_NOMASTER + SYN_NOMVEL + SYN_ACCEPTNXTM +
SYN_ACCEPTNXTS

This feature was created to allow a complete marker restart outside of SYNCM. It
does exactly the same as if you do a SYNCM command. So the next markers will
be accepted and there will be no faking if no markers are seen. That is the main
difference to the normal restart function.

Portability Command is available starting with MCO 5.00.

Command Group SYN

Cross Index par. 33-28 SYNCMFPAR, par. 33-23 SYNCMSTART, SYNCM
SYSVAR 4209 PFG_SYNCSTART see Axis Process Data

MCO 305 Command Reference
__ Command Reference __

110 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYNCP

Summary Angle/position synchronization with the master

Syntax SYNCP

Description The command completes an angle/position synchronization with the master. In
doing so the position according to the gear factors to the master is kept synchro-
nous, that means after an external disturbance the program subsequently tries to
recover the corresponding stretch.

Master velocity

Slave velocity

Synchronization command

V

t

 However, in doing so the values set for velocity VEL, and acceleration ACC or DEC
are not exceeded.

The following parameters affect the behavior:
par. 33-10 Syncfactor Master and
par. 33-11 Syncfactor Slave (gear factors)
par. 33-12 Position Offset for Synchronization
par. 33-13 Accuracy Window for Position Sync. (accuracy for flag)
par. 32-68 Reverse Behavior for Slave

During synchronization the program proceeds as follows:

When the SYNCP command is started, the actual master position is determined and
is retained. From the master velocity, and in consideration of the acceleration
allowed, the necessary slave velocity is calculated in order to reach the master
position. The slave is accelerated so long until the calculated position has been
reached or until it is close enough to the reference position to reach it.

If RAMPTYPE >= 2, then synchronization is started with limited jerk. This only
concerns the start; reaching the master velocity still looks like a trapezoid. This
helps smoothen the start procedure in the case of heavy loads or fragile
mechanics.

NB!:
As soon as the deviation between the position of the slave and master is less than
par. 33-13 SYNCACCURACY, the ACCURACY flag is set.

If par. 32-68 REVERS is set so that it is not possible to drive in reverse, but for
some reason the slave is further than the master (e.g. because only the master
has moved in reverse) then the slave will wait at velocity 0.

In doing so the slave takes its own acceleration time into consideration and will
start moving if necessary before the correct position has been reached if the
master already has a higher velocity.

Instead of using this catch-up procedure it is also possible to move the slave with
CVEL to approximately the same velocity as the master and then trigger SYNCP.

A change in the par. 33-12 Position Offset for Synchronization during the synchro-
nization leads to a new synchronization procedure with ramps (see above).

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 111

NB!:
SYNCP should only be called up once since the synchronizing continues until the
next motion or stop command. All additional SYNCP commands cause the synchro-
nization to start over again from the beginning and this is not normally intended,
as you reset the actual SYNCERR.

Portability Start behavior if RAMPTYPE >= 2 is available starting with MCO 5.00.

Command Group SYN

Syntax Example SYNCP /* normal synchronization of the position */
CVEL 50 /* achieve velocity before synchronization */
CSTART
WAITT 500
SYNCP

 SYNCSTAT

Summary Flag to query synchronization status.

Syntax res = SYNCSTAT

Return Value res = synchronization status with the following meaning:

 Value Bit

Par. 33-25 SYNCREADY 1 0
Par. 33-24 SYNCFAULT 2 1
Par. 33-13 SYNCACCURACY 4 2
SYNCMMHIT 8 3
SYNCSMHIT 16 4
SYNCMMERR 32 5
SYNCSMERR 64 6

Description The following flags are defined and can be queried with SYNCSTAT: READY, FAULT,
ACCURACY and MHIT and MERR for both the master and the slave.

SYNCACCURACY The controller checks whether SYNCERR < par. 33-13 SYNCACCURACY is true
every ms. If this is true, then SYNCACCURACY is set, otherwise the flag is deleted.
This check is made for both SYNCP and SYNCM.

This flag is not used with SYNCV.

When executing a SYNCP or SYNCM command the flag is deleted.

SYNCFAULT /
SYNCREADY

For every SYNCP or SYNCM command these flags are deleted. Subsequently the
program checks whether SYNCACCURACY is set or not at every marker pulse of the
slave (SYNCP) or when a marker pulse of the master and a marker pulse of the
slave exist (SYNCM).

If it is set the ready counter is increased and the fault counter is set to 0,
otherwise the fault counter is increased and the ready counter set to 0.

If the ready counter is greater than the value determined by the par. 33-25
SYNCREADY, then the flag SYNCREADY is set. Otherwise it is deleted.

If the fault counter is greater that the value determined by the par. 33-24
SYNCFAULT then the flag SYNCFAULT is set. Otherwise it is deleted.

SYNCMMHIT /
SYNCSMHIT

SYNCMMHIT and SYNCSMHIT are set, if the master marker or the slave marker is
occurred. These flags are deleted for every SYNCM command. Subsequently the
flag SYNCMMHIT is set after the first occurrence of a master marker pulse or after
the n-th marker pulse (par. 33-15 Marker Number for Master).

The same is true for SYNCSMHIT with the slave.

MCO 305 Command Reference
__ Command Reference __

112 MG.34.R1.02 – VLT® is a registered Danfoss trademark

NB!:
This flag is no longer deleted unless SYNCM is started again or explicitly deleted
with SYNCSTATCLR.

SYNCMMERR /
SYNCSMERR

If in the Marker Windows par. 33-21 SYNCMWINM or par. 33-22 SYNCMWINS a
tolerance range is defined, then SYNCMMERR or SYNCSMERR are set as soon as
the maximum distance allowed has been achieved and no marker was identified.

 Example:
Distance between two master markers par. 33-17 = 30000
Master Marker Tolerance Window par. 33-21 SYNCMWINM = 1000
The flag is set at 31000 if no marker is identified.

These flags are deleted for every SYNCM command.

If the Master Marker Tolerance Window is 0 and thus no tolerance range is defined,
the program checks every marker pulse (or after every n-th pulse) whether the
distance between the two last markers registered is less than 1.8 times the value
defined by the par. 33-17 Master Marker Distance. If not the corresponding flag is
set.

The same applies analogously for SYNCSMERR in the slave.

NB!:
These flags are automatically reset: during the next successful marker correction
and in the event of a new start of SYNCM or through the command SYNCSTATCLR.

Command Group SYN

Cross Index SYNCSTATCLR

Syntax Example IF (SYNCSTAT & 4) THEN OUT 1 1 /* If ACCURACY then set output */
ENDIF

 SYNCSTATCLR

Summary Resetting of the flags MERR and MHIT

Syntax SYNCSTATCLR value

 The SYNCSTATCLR command should only be used in a subprogram for dealing with
errors. (see ON ERROR GOSUB).

Parameter value = 8 = SYNCMMHIT
16 = SYNCSMHIT
32 = SYNCMMERR
64 = SYNCSMERR

Description The corresponding bits can be reset in SYNCSTAT with SYNCSTATCLR value thus
resetting the error flags MERR and the HIT flags MHIT. None of the other flags can
be altered.

Command Group SYN

Cross Index ON STATBIT, ON ERROR GOSUB, ERRNO, CONTINUE, MOTOR ON

Syntax Example SYNCSTATCLR 32 /* clear current error message */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 113

 SYNCV

Summary Velocity synchronization with the master

Syntax SYNCV

NB!:
SYNCV should only be called up once since the synchronizing continues until the
next motion or stop command. All additional SYNCV commands cause the
synchronization to start over again from the beginning and this is not normally
intended, as you reset the actual synchronization error.

NB!:
Track and synchronization errors are not monitored in SYNCV mode, it is therefore
recommendable to use the hardware encoder monitor.

Description With SYNCV the velocity synchronization with the master is completed, for example
after an external disturbance. In doing so only the velocity is taken into considera-
tion and the controller does not attempt to recover the position.

Master velocity

Slave velocity

Synchronization command

V

t

For synchronization and during the synchronization process neither the pre-set
velocity, VEL, nor the pre-set acceleration, ACC or DEC, are exceeded.

The parameters of the gear factors used for synchronization are: par. 33-10
Synchronizing Factor Master, par. 33-11 Synchronizing Factor Slave.

Furthermore, the speeds are not simply determined on the basis of the difference
between the current position minus the last position (master/slave), rather the
values are filtered according to the settings in par. 33-26 Velocity Filter
(SYNCVFTIME). This means the filter for the slave is determined by the maximum
speed. In other words:

VELMAX * 5 corresponds to the encoder resolution for the filter table, where
VELMAX is the speed in qc/ms. (The formula is a result of the assumption that the
filter table for the encoder resolution was made with a maximum speed of 3000
RPM.)

During the transition from the speed controller to the position controller this is done
as smoothly as possible. In addition the new set position is defined in such a
manner that the following is true:

command_pos = actual_pos + error

old_error, cvel, avel are maintained.

Command Group SYN

Cross Index Parameters of the AXS group

MCO 305 Command Reference
__ Command Reference __

114 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 SYSVAR

Summary System variable (Pseudo array) reads system values.

Syntax SYSVAR[n]

n = index

Description With the system variable SYSVAR – a prepared pseudo array – it is possible to read
system and process data. This index can also be used to link the system variable using
LINKPDO or LINKSDO or specify recording data with TESTSETP or TESTSETINDEX.

This index can also be used, if you link the system variable with the LCP display using
LINKSYSVAR.

For compatibility reasons it is still possible to use these SYSVAR numbers. But it is
recommended to use the SDO dictionary number for addressing:

0x01nnnnss = Can Index nnnn, Subindex ss

see SDO Dictionary

NB!:
The values of the system variables are internal, hardware-dependent values which
may change.

Portability CANopen

Command Group CON

Cross index LINKPDO, LINKSDO, TESTSETP, TESTSETINDEX,
Axis Parameters (CAN-SDO Number 0x2300), see SDO Dictionary in the “Appendix” in
the online help..

System Process Data

 Index Description System Process Data

 1 Input Byte 0 (inputs 1..8 from MCO 305)

 2 Input Byte 1 (inputs 18..33 from CC)

 3 Input byte 2 (inputs 9..10 / 12 from MCO 305)

 9 Output Byte 0

 17 Top 2 bytes which are provided by the APOSS command STAT

 22 Internal millisecond counter. Value which is also supplied by the APOSS command TIME

 28 Actual motor current [1/100 Amp.]; (parameter 16-14)

 30 Motor voltage [1/10 V]; (parameter 16-12)

 31 FC 300 status (parameter 16-03)

 32 Main actual value (parameter 16-05)

 33 Current line number of the APOSS program in case of #DEBUG NOSTOP

 34 Motor frequency (parameter 16-13)

 35 Motor torque (parameter 16-16)

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 115

 TESTSETDEST

Summary Specifies the memory section for saving recorded data.

Syntax TESTSETDEST arrayname

Parameter arrayname = name of the array used for the recording
or keyword DYNMEM for recording data into free memory.

NB!:
Please make sure that the size of the array or available memory (DYNMEM) is
sufficient for the recording. You need 10 elements for the header describing the
data recording configuration, plus the number of test series (if the array holds
more than one), plus the number of configured system variables multiplied with
the number of samples. Thus for 100 samples of 6 system variables (i.e.
TESTSTART 100) you need an array size of 611 elements or in case of DYNMEM
usage, the free memory has to be 611 x 4 bytes= 2'444 bytes.

The structure of the recorded data is as follows:
(All data values have a length of 4 bytes.)
Designation Content Meaning
version 999 Identification mark and version of the data

structure
ms 1 Interval between two measurements in ms
no. of indices 3 Number of system variables defined

(always 3, if configured by command TESTSETP)
svi 1 i Index of the 1. recorded system variable (sysvar)
svi 2 i Index of the 2. recorded system variable (sysvar)
... i Index of the
svi n i Index of the n. recorded system variable (sysvar)
no. of samples nn Number of recorded samples
first entry count 0 Relative count of the first sample in the recorded

data:
In case of one time recording: 0
In case of cyclic recording: where to start reading

stop time … Internal system time, when recording was stopped
data … Recorded data, total no of values =

no. of samples * no. of variables (svi 1 ... svi n)
no. of test series 0 Number of test series (if more than one is present)

0 or missing, if there are no more test series
more test series … (see above)

NB!:
If the given memory section (array or DYNMEM) does not have sufficient space for
the defined number of measurements (parameter no > 0), the error 171 “Array too
small” or error 194 “DYNMEM too small” is triggered during program execution. It
is recommended to use TESTSTART 0, which fills up the given memory in
maximum.

Description TESTSETDEST defines, where the recorded data has to be saved. There are the
following two possibilities:
- A (big enough) array, which was defined at program start (DIM ...).
- The free memory, which is indicated by the keyword DYNMEM.

If a TESTSETP is executed after a TESTSETDEST command, then the destination
given by the TESTSETP command is valid. Always the last setting before the
TESTSTART is the one, which is in use. If no TESTSETDEST or TESTSETP command
is executed at all, the DYNMEM is used as default destination.

MCO 305 Command Reference
__ Command Reference __

116 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Portability Command is available starting with MCO 5.00.

To read the resulting data with APOSS, a current version of APOSS should be used.
Current versions of APOSS provide a simple way to select between arrays and
DYNMEM. Older versions of APOSS can be used if the array number is set to the
special value of 65535.

Command Group SYS

Cross Index TESTSETP, TESTSETINDEX, TESTSETTIME, TESTSETTYPE, TESTSTART, TESTSTOP

Syntax Example DIM testdata[6011] // Define an array (used for data recording later on)
TESTSETDEST testdata // Define an array as the destination
// Define the system variables to be recorded:
// Slave actual pos., Slave command pos., Master pos.,
// Tracking error, Synchronization error, Slave velocity
TESTSETINDEX 4096, 4097, 4105, 4101, 4207, 4186
TESTSTART 1000 // Start recording of 1000 samples
SYNCP // Start position synchronization

Syntax Example // Define the system variables to be recorded:
// Slave actual pos., Slave command pos., Tracking error, Slave velocity
TESTSETINDEX 4096, 4097, 4101, 4186
TESTSETDEST DYNMEM // Define free memory as the destination
NOWAIT ON // Do not wait until a position command is finished
DEFORIGIN // Set position value to 0
VEL 100 // Maximum velocity
TESTSTART 0 // Start recording (until TESTSTOP or DYNMEM filled up)
POSA 100000 // Start positioning
DELAY 500 // Wait 500 ms
VEL 20 // Set reduced velocity
POSA 100000 // Apply new velocity but keep old target
NOWAIT OFF // Wait until end of positioning
DELAY 200 // Wait 200 ms
TESTSTOP 0 0 // Stop recording

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 117

 TESTSETINDEX

Summary Specify system variables for data recording.

Syntax TESTSETINDEX svi1, svi2, svi3, ..., svin

Parameter svi1…svin: indices of maximum 20 system variables (sysvar[...]) to be recorded.

NB!:
Maximum 20 system variables can be defined for simultaneous data recording. If
more variables are listed as part of the TESTSETINDEX command, an error 195
“Too many indices for TESTSETINDEX” comes up at program runtime.

NB!:
Please notice, that the size of the required memory for data storage is mainly
depending on the number of defined system variables multiplied by the number of
samples.

NB!:
If more than 3 system variables are configured for data recording, it is a must that
at least a APOSS-IDE for MCO 5.00 is in use for reading out and visualizing the
data using the Tools → Oscilloscope (TESTSETP).

NB!:
If a recording was stopped (by TESTSTOP or reaching the defined number of
samples) and another TESTSETINDEX and a following TESTSTART is executed, then
the new data recording fills up the configured memory (array or DYNMEM) right
from the beginning again. This means, that all old data recordings in the same
memory area (array or DYNMEM) are overwritten and lost.

Description TESTSETINDEX configures the system variables (sysvar[...]), which have to be
captured during data recording. The TESTSTART command defines the number of
test samples and triggers the start of data recording. The recorded data can be
read out and visualized by Tools → Oscilloscope (TESTSETP) afterwards.

The TESTSETINDEX command is a newer APOSS enhancement and offers a higher
flexibility than the former (but still existing) TESTSETP command. Therefore it is
recommended to use TESTSETINDEX instead of TESTSETP. The TESTSETINDEX
command offers the possibility to define more than three system variables for data
recording. A complete configuration of a data recording uses the commands
TESTSETINDEX, TESTSETDEST, TESTSETTYPE, TESTSETTIME.

Tools → Oscilloscope (Single Shot) can be used to set up a TESTSETINDEX
configuration online without the need for TESTSET... commands and definitions
within the APOSS program code. It is also possible to sample data in a 1 ms
period. The difference and advantage of the implementation of TESTSET...
commands directly in the program code is, that the recording starts at a defined
line of code then.

Tools → Oscilloscope (Free Run) can be used to record system and program
variables online during a program run. The sample rate of the Free Run
Oscilloscope is limited by some factors, like the type of communication interface in
use, the number of data to be recorded during each sample or the firmware
version of the controller. The minimum sample rate is 10 ms if you use the onboard
RS485.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index SYSVAR, TESTSTART, TESTSETDEST, TESTSETTIME, TESTSETTYPE, TESTSTOP,
TESTSETP Oscilloscope

MCO 305 Command Reference
__ Command Reference __

118 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Syntax Example // Configure data recording of the following system variables:
// Slave actual pos., Slave command pos., Master position,
// Tracking error, Synchronization error, Slave velocity
TESTSETINDEX 4096, 4097, 4105, 4101, 4207, 4186
TESTSETTIME 20 // Record data every 20 ms
TESTSETDEST DYNMEM // Use free memory for data recording
TESTSETTYPE 1 // Use cyclic recording (if memory is too small)
TESTSTART 0 // Start recording (until TESTSTOP)
SYNCP // Start position synchronization
DELAY 5000 // Run 5 seconds in synchronized mode
CVEL 10 // Set 10% of maximum velocity
CSTART X(1) // Run in continuous velocity mode
DELAY 2000 // Use velocity mode for 2 seconds
MOTOR STOP X(1) // Stop motor
DELAY 100 // Wait 100 ms
TESTSTOP 0 0 // Stop recording

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 119

 TESTSETP

Summary Specify recording data for test run

Syntax TESTSETP ms vi1 vi2 vi3 arrayname

Parameter ms = interval in milliseconds between two measurements

vi 1–3 = indices of the three values to be recorded. The agreements for the
system array apply. Three values are always recorded.

array name = Name of the array used for the recording

Array Format The values are stored as follows within the array (all values 4 Byte):

Designation Content Meaning

version 000 Version of the data structure
ms 1 Interval between two measurements in ms
no. of indices 3 Number of indices defined (always 3 for TESTSETP)
svi 1 i Index of the 1. recorded system variable (SYSVAR)
svi 2 i Index of the 2. recorded system variable (SYSVAR)
svi 3 i Index of the 3. recorded system variable (SYSVAR)
no. of samples nn Number of recorded samples
first entry count 0 … Relative count of the first sample in the recorded data:

In case of one time recording: 0
In case of cyclic recording: where to start reading

stop time … Internal system time, when recording was stopped
data … Recorded data, total no of values =
… … no. of samples * no. of variables (svi 1 ... svi n)
no. of test series 0 ... Number of test series (if more than one is present)

0 or missing, if there are no more test series in the
same array

more test series … (see above)

NB!:
Please make sure that the size of the array or available memory (DYNMEM) is
sufficient for the recording. You need 10 elements for the header describing the
data recording configuration, plus the number of test series (if the array holds
more than one), plus 3 elements for each sample. Thus for 100 samples (i.e.
TESTSTART 100) you need an array size of 311 elements or in case of DYNMEM
usage, the free memory has to be 311 x 4 bytes= 1'244 bytes.

NB!:
Please notice, that firmware versions (< MCO 5.00) just had a header using 7
elements. This meant, that the array size just required an overhead of 7 elements
(or 8, if more than one test series was included). For new firmware versions
(>= MCO 5.00) there has to be at least an overhead of 11 elements taken into
account for the calculation of the array size.

NB!:
If the keyword DYNMEM is used, and the data should be save in the free memory,
than the version of the controller has to be at least MCO 5.00.

Description TESTSETP configures the parameters of a data recording, i.e. which data has to
recorded, how often and in which memory section. The sample rate can be set down
to a value of 1 ms. The TESTSTART command defines the number of test samples
and triggers the start of the recording. At least the commands TESTSETP and
TESTSTART have to be part of the APOSS application program for that. The recorded
data can be read out and visualized by Tools → Oscilloscope (TESTSETP) afterwards.

MCO 305 Command Reference
__ Command Reference __

120 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 The data can be recorded into a specified array or into the so-called DYNMEM
memory section. The keyword DYNMEM stands for the free memory, which is not
used by the program or variables and available for data recording. If the available
DYNMEM size is not big enough to handle the recorded data, an error message is
returned. It is recommended to use TESTSTART 0, if DYNMEM is in use.

 In this case the maximum available DYNMEM is used without the risk to generate
an overflow and get an error message. The usage of the DYNMEM requires a
version starting with MCO 5.00.

The TESTSETINDEX command is a newer APOSS enhancement and offers a higher
flexibility than the TESTSETP command. Therefore it is recommended to use
TESTSETINDEX instead of TESTSETP. The TESTSETINDEX command offers the
possibility to define more than three system variables and is available starting with
MCO 5.00. A complete configuration can use the commands TESTSETINDEX,
TESTSETDEST, TESTSETTYPE, TESTSETTIME. These commands can also be used in
combination with the TESTSETP configuration. But it has to be kept in mind that
these commands overwrite the corresponding configuration settings, which have
been defined by a former TESTSETP. The recording is always based on the last
defined settings.

Tools → Oscilloscope (Single Shot) can be used to set up a TESTSETINDEX
configuration online without the need for TESTSET... commands and definitions
within the APOSS program code. It is possible also to sample data in a 1 ms period.
The difference and advantage of the implementation of TESTSET... commands
directly in the program code is, that the recording starts at a defined line of code
then.

Tools → Oscilloscope (Free Run) can be used to record system and program
variables online during a program run. The sample rate of the Free Run Oscilloscope
is limited by some factors, like the type of communication interface in use, the
number of system variables to be recorded during each sample or the firmware
version of the controller. The minimum sample rate is 10 ms if you use the onboard
RS485.

Tools → Oszilloscope (Tune) can be used to trigger a test run which records actual
and command position, speed, acceleration and current and whose result can be
seen in the test run graphic. So, this is a kind of a predefined, menu driven data
recording of a specified motor movement.

Portability Starting with MCO 5.00 the TESTSETP command has been replaced by four new
commands with many more capabilities. The previous TESTSETP still works as
before but it is recommended that the new commands be used.

Command Group SYS

Cross References TESTSTART, DIM, SYSVAR,
TESTSETINDEX, TESTSETDEST, TESTSETTIME, TESTSETTYPE,
Tools → Oscilloscope (TESTSETP)

Syntax Example
DIM tstrunarray[311] // Array with 311 elements
// Configure data recording of slave pos., master pos, tracking error each 3ms
TESTSETP 3 0X1001 0X1009 0X1005 tstrunarray
TESTSTART 100 // Start recording of 100 samples
POSR 10000 // Start positioning

Syntax Example DIM tstrunarray[311] // Array with 311 elements
TESTSETP 3 4096 4105 4101 tstrunarray // same example, but decimal index

Syntax Example TESTSETP 3 4096 4105 4101 DYNMEM // same example, but using DYNMEM

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 121

 TESTSETTIME

Summary Defines the sampling period for data recording.

Syntax TESTSETTIME ms

Parameter ms = Sampling period in milliseconds

If this command is not used before a TESTSTART, then the default (1 ms) is used.

Description This command defines the sampling period for data recording. (This was the first
parameter of the previous TESTSETP.) According to the given period in milliseconds
the values of the configured system variables are saved into the configured
memory section (array or DYNMEM).

The minimum sampling period is 1 ms. This means that each millisecond the data
of all configured system variables is recorded.

If a TESTSETP is executed after a TESTSETTIME command, then the period given
by the TESTSETP command is valid. Always the last setting before the TESTSTART
is the one, which is in use. If no TESTSETTIME and no TESTSETP is executed
before the TESTSTART then the default value of 1 ms is in use.

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index TESTSETP, TESTSETINDEX, TESTSETDEST, TESTSETTYPE, TESTSTART, TESTSTOP

Syntax Example TESTSETDEST DYNMEM // Use DYNMEM for data recording
TESTSETTYPE 0 // Configure one time recording
TESTSETTIME 5 // Sample data just every 5 milliseconds
// Configure system variables used for data recording:
// Slave Pos., Tracking error, Input 1-8, Output 1-8
TESTSETINDEX 4096, 4101, 0x01220202, 0x0122020A
DEFORIGIN // Set position to 0
TESTSTART 0 // Start recording (until TESTSTOP or DYNMEM is filled up)
VEL 10 // 10% of maximum velocity
ACC 10 // 10% of maximum acceleration
DEC 50 // 50% of maximum deceleration
POSA 100000 // Start Positioning (and wait until finished)
DELAY 200 // Wait 200 ms
TESTSTOP 0 0 // Stop recording

MCO 305 Command Reference
__ Command Reference __

122 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 TESTSETTYPE

Summary Defines the type of data recording, i.e. one time recording or cyclic recording.

Syntax TESTSETTYPE type

Parameter Type = 0 = one time recording (= default setting)
1 = cyclic recording

If no type is set before a TESTSTART is executed, then the default (one time
recording) is used.

NB!:
A cyclic recording even proceeds when a program is finished or stopped by an
error. The recording just stops, if the command TESTSTOP is executed or an user
break (= pressing [Esc]) is taking place.

NB!:
A cyclic recording always overwrites the given memory as soon as the memory
limit or the defined number of samples is reached. The actually stored number of
samples depends thereby on the size of the memory (TESTSTART 0) or the
defined number of samples (TESTSTART value > 0).

Description This command specifies, if a configured data recording is executed just once or
runs endless in a cyclic mode in the background until a TESTSTOP is executed.

If cyclic recording is activated and TESTSTART 0 is defined, all the available
memory is used and overwritten again and again. If a defined number of samples
is specified (i.e. TESTSTART value > 0) , just the corresponding memory section
is in use and overwritten again and again.

A one time recording (TESTSETTYPE 0) stops, when ...
... the defined number of samples is recorded (TESTSTART value > 0)
... the specified memory (array or DYNMEM) is filled up (TESTSTART 0)
... the command TESTSTOP is executed
... the program execution is stopped by the user by pressing the [Esc] key

A cyclic recording stops (TESTSETTYPE 1), when ...
... the recording is stopped by the command TESTSTOP
... the program execution is stopped by the user by pressing the [Esc] key

The cyclic recording can be used very well for debugging purposes. Especially in
case of machine misbehavior, which does not take place very often. The usage of
cyclic recording, DYNMEM and TESTSTART 0 gives the power to track a maximum
number of information for an endless period of time. When an error happens, a
defined event takes place or an external interrupt comes up, the recording can be
stopped by the TESTSTOP command. The information recorded before, can then
be read out, evaluated and saved to disk using Tools → Oscilloscope (TESTSETP).

Portability Command is available starting with MCO 5.00.

Command Group SYS

Cross Index TESTSETP, TESTSETINDEX, TESTSETDEST, TESTSETTIME, TESTSTART, TESTSTOP

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 123

Syntax Example SYNCP // Synchronization of the position
// Configure system variables used for data recording:
// Slave pos., Master pos., Tracking error, Sync. error,
// Slave velocity, Scaled difference of master and slave velocity
TESTSETINDEX 4096, 4105, 4101, 4207, 4185, 4236
TESTSETTYPE 1 // Configure cyclic recording
WAITI 1 ON // Wait until input 1 is present
TESTSTART 0 // Start recording (until TESTSTOP)
WAITI 1 OFF // Wait until input 1 signal is removed
TESTSTOP 0 0 // Stop recording

Syntax Example // Define an error handler
ON ERROR GOSUB errhandler
// Define all necessary data recording settings:
TESTSETDEST DYNMEM // Use DYNMEM for data recording
TESTSETTYPE 1 // Configure cyclic recording
// Configure system variables used for data recording:
// Slave Pos., Tracking error, Input 1-8, Output 1-8
TESTSETINDEX 4096, 4101, 0x01220202, 0x0122020A
TESTSTART 0 // Start recording (until TESTSTOP)

// Program main loop
endless:
 // Execute the application code
GOTO endless

// Subprogram section
SUBMAINPROG
SUBPROG errhandler // Error handler
 TESTSTOP 0 0 // Stop recording
 EXIT // Quit program
RETURN // End of error handler
ENDPROG // End of subprogram section

MCO 305 Command Reference
__ Command Reference __

124 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 TESTSTART

Summary Start the recording of a test run.

Syntax TESTSTART n

Parameter n = 0 The maximum number of samples is recorded,
which fits into the defined memory section (array or DYNMEM).

n > 0 number of samples to be recorded

If the given memory section (array or DYNMEM) does not have sufficient space for
the defined number of samples (parameter no > 0), the error 171 “Array too
small” or error 194 “DYNMEM too small” is triggered during program execution.
Therefore it is recommended to use TESTSTART 0, which fills up the given memory
in maximum.

If a recording was stopped (by TESTSTOP, or [Esc] is pressed, or in case of a single
shot recording, or reaching the defined number of samples) and another
TESTSETINDEX and a following TESTSTART is executed, then the new data
recording fills up the configured memory (array or DYNMEM) right from the
beginning again. This means, that all old data recordings in the same memory area
(array or DYNMEM) are overwritten and lost.

If a next TESTSTART is executed without a TESTSETINDEX definition in between,
then the new data is appended to the last data recording. The configured memory
(array or DYNMEM) holds more than one recording then.

Description This command is used to start data recording according to the configuration made
by the last TESTSETP, TESTSETINDEX, TESTSETDEST, TESTSETTIME, TESTSETTYPE
commands. The recorded data can be read out and visualized afterwards using
Tools → Oscilloscope (TESTSETP).

If not all parameters are completely specified before the TESTSTART command is
executed, the following default settings are in use for data recording:

− Default sampling period: 1 ms

− Default type of recording: one time

− Default memory section for data storage: DYNMEM

− Default system variables for recording: 4096 (ACTPOS), 4097 (COMPOS),
4324 (ACTCURR)

It is also possible to gather more than one recording in one array. For example, it
is possible to start a recording of 1000 samples, then stop the recording and then
start another 500 samples. If then the data are read out with APOSS, two
recordings will be seen, that you can look at. If a restart from scratch is desired,
then a new TESTSETINDEX command must be executed.

Portability Extension concerning the Oscilloscoope functions are available starting with
MCO 5.00.

Command Group SYS

Cross References Tools → Oscilloscope (TESTSETP)
TESTSETP, TESTSETINDEX, TESTSETDEST, TESTSETTIME, TESTSETTYPE,
TESTSTOP

Syntax Example SYNCP // Synchronization of the position
// Configure system variables used for data recording:
// Slave pos., Master pos., Tracking error, Sync. error,
TESTSETINDEX 4096, 4105, 4101, 4207
WAITI 1 ON // Wait until input 1 detects a signal
TESTSTART 200 // Start recording (200 measurements)

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 125

Syntax Example NOWAIT ON // Do not wait until the position is reached
DEFORIGIN // Do not wait until the position is reached
// Configure system variables for recording:
// Actual pos., Command pos., Tracking Error, Velocity, Indexpos., Inp. 1-8
TESTSETINDEX 4096, 4097, 4101, 4186, 4098, 0x01220202
TESTSTART 0 // Start recording (until TESTSTOP or DYNMEM is filled up)
VEL 50 // 50% of maximum velocity
POSA 100000 // Start positioning
WAITP 20000 // Wait until position 20000 is reached
VEL 100 // Increase velocity to 100%
POSA 100000 // Use new velocity for the same target
NOWAIT OFF // Wait until positioning is finished
DELAY 200 // Wait 200ms
TESTSTOP 0 0 // Stop recording

 TESTSTOP

Summary Stops the data recording.

Syntax TESTSTOP method param

Parameter method method, how stop should take place.
0 = stops immediately
No more methods are implemented up to now

param parameter of the stopping method.
Not in use for the implemented stopping methods up-to-now

NB!:
Due to the fact, that just method 0 is implemented up to now, the only valid
command and parameter combination look like this:
TESTSTOP 0 0

Description This command stops the data recording in the configured way.

NB!:
If a recording was stopped by TESTSTOP and another TESTSETINDEX and a following
TESTSTART is executed, then the new data recording fills up the configured memory
(array or DYNMEM) right from the beginning again. This means, that all old data
recordings in the same memory area (array or DYNMEM) are overwritten and lost.

NB!:
For applications, which use cyclic recording, it is recommended to insert a TESTSTOP
command at the end of the program or if the program quits in case of an error.
Otherwise the recording still runs on even if the program is not executing anymore.

Portability Command is available starting with MCO 5.00.

If values with a newer APOSS version are read out, the recording is displayed
correctly (time wise).

Since MCO 5.00, sampling is also stopped when [Esc] is pressed in APOSS.

Command Group SYS

Cross Index TESTSETP, TESTSETINDEX, TESTSETDEST, TESTSETTIME, TESTSETTYPE, TESTSTART

Syntax Example // Define an error handler
ON ERROR GOSUB errhandler
// Configure system variables used for data recording:
// Slave pos., Master pos., Tracking error, Sync. error,
// Slave velocity, Scaled difference of master and slave velocity
TESTSETINDEX 4096, 4105, 4101, 4207, 4185, 4236
TESTSETTYPE 1 // Configure cyclic recording

MCO 305 Command Reference
__ Command Reference __

126 MG.34.R1.02 – VLT® is a registered Danfoss trademark

WAITI 1 ON // Wait until input 1 is present
SYNCP // Synchronization of the position
TESTSTART 0 // Start recording (until TESTSTOP)
WAITI 1 OFF // Wait until input 1 signal is removed
MOTOR STOP // Stop motor
TESTSTOP 0 0 // Stop recording

// Subprogram section
SUBMAINPROG
SUBPROG errhandler // Error handler
 TESTSTOP 0 0 // Make sure, that recording is stopped
 EXIT // Quit program
RETURN // End of error handler
ENDPROG // End of subprogram section

Syntax Example NOWAIT ON // Do not wait until the position is reached
DEFORIGIN // Set current position to 0
// Configure system variables for recording:
// Actual pos., Command pos., Tracking Error, Velocity, Indexpos., Inp. 1-8
TESTSETINDEX 4096, 4097, 4101, 4186, 4098, 0x01220202
TESTSTART 0 // Start recording (until TESTSTOP or DYNMEM is filled up)
VEL 20 // Use 20% of maximum velocity
POSA 100000 // Start positioning with velocity 50%
WAITP 50000 // Wait until position 50000 is reached
VEL 100 // Increase velocity to 100%
POSA 100000 // Start positioning with new velocity
NOWAIT OFF // Wait until positioning is finished
DELAY 200 // Wait 200ms
TESTSTOP 0 0 // Stop recording

Sample This example gathers data continuously until a special condition is reached and
recording is stopped. If you then read out the data, you will get the last sampled
data before the stop occurred. The amount of data is dependent on the available
dynamic memory.

#define PFG_ACTPOS 0x01250001
#define PFG_COMPOS 0x01250002
#define PFG_VCMDSIGNED 0x012500B5
…
TESTSETINDEX PFG_ACTPOS, PFG_COMPOS, PFG_VCMDSIGNED
TESTSETDEST DYNMEN // select dynamic memory for recording
TESTSETTIME 5 // select a sampling period of 5 ms
TESTSETTYPE 1 // select cyclic recording
TESTSTART 0 // start recording and use the whole available dynamic memory
…
IF(whatever) THEN
 TESTSTOP 0 0 // stop recording
ENDIF

This way of recording could also be used without changing your program at all by
using the oscilloscope feature of APOSS. (See Single Shot Oscilloscope).

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 127

 TIME

Summary Reads system-time

Syntax res = TIME

Return Value res = system-time in milliseconds after switching on

NB!:
Please note that after counting up to MLONG the value will change to
–MLONG.

Description The internal system-time can be read out using the TIME command. The TIME
command is most suitable for calculating the execution time of a command
sequence or device cycle time.

Command Group SYS

Syntax Example PRINT TIME /* print current system-time */
timestop1 = TIME /* store current system-time */

Program Sample ACC_01.M, DELAY_01.M, EXIT_01.M, GOSUB_01.M

 TRACKERR

Summary Queries actual position error of the axis

Syntax res = TRACKERR

Return Value res = actual trailing of the axis in UU

Description Queries the difference between the CPOS and APOS, i.e., it tracks the error
occurring.

It is to be noted that the actual position need not be the same as the commanded
position and they are not automatically compensated.

Command Group SYS

Cross Index APOS, CPOS, par. 32-67 Max. Tolerated Position Error

Syntax Example PRINT TRACKERR /* query actual position error of the axis */

Sample POSA 500
WHILE(1) DO
{
PRINT "Command Position", CPOS
PRINT "Actual Position", APOS
PRINT "Error", TRACKERR
WAITT 10
}

MCO 305 Command Reference
__ Command Reference __

128 MG.34.R1.02 – VLT® is a registered Danfoss trademark

ENDWHILE
Output:
 Command Position 100
 Actual Position 98
 Error 2
 Command Position 200
 Actual Position 199
 Error 1
 Command Position 300
 Actual Position 297
 Error 3 …
 Command Position 500
 Actual Position 500
 Error 0
 … and so on

The gray shaded region between the CPOS and the APOS at the time interval can
be thus readout using TRACKERR. To read all the error throughout the positioning,
TRACKERR should be in a loop to actually track to the error.

 USRSTAT

Summary Sets the user status (long) which can be queried via the CAN bus.

Syntax USRSTAT val

Parameter val = value to be set

Description Sets the user status (long) which can be queried via the CAN bus.

Portability Command is available starting with MCO 5.00.

Command Group CAN

Syntax Example USRSTAT 5 /* sets user status to 5 */

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 129

 VEL

Summary Set velocity for relative and absolute motion.

Syntax VEL v

solutionReVelocity8332.par

Velocity Maximum 80-32 par.
V [RPM] Velocity Command

−
∗=

Parameter v = scaled velocity value

Description The velocity for the next absolute and relative positioning procedure is determined
with the VEL The velocity for the next absolute and relative positioning procedures
and the maximum allowed velocity for synchronizing procedures are determined
with the VEL command.

The value remains valid until a new velocity is set via another VEL command. The
new velocity value will be set in reference to the parameters 32-80 Maximum
Velocity and 32-83 Velocity Resolution. If the velocity value equals the Velocity
Resolution, then the RPM value set in Maximum Velocity will be used.

NOTE: Slave velocity in synchronizing mode is also limited by the VEL command.

NB!:
If no velocity has been set prior to a positioning or synchronizing command, then
the value of par. 32-84 Default Velocity will be used.

If the velocity needs to be altered during positioning, it is possible in the NOWAIT
ON mode, when the VEL command is followed by another POSA command targeting
to the desired position.

The maximum speed allowed can be changed at any time with the command VEL, if
a SYNCV, SYNCP, or SYNCM follows the VEL command.

Command Group REL, ABS

Cross Index ACC, POSA, POSR, NOWAIT
Parameter: 32-80 Maximum Velocity

Syntax Example VEL 100 /* Velocity 100 */

Program Sample VEL_01.M

 VLTALARMSTAT

Summary Returns if an alarm is active or not.

Syntax VLTALARMSTAT

Description The command VLTALARMSTAT returns if an alarm is active or not. There are two
possible values, 1<<3 or 1<<6 depending if the alarm can be reset or not.

bit 3 = Alarm(s) present
bit 6 = Trip Lock Alarm(s) present

Command Group CON

Cross Index VLTERRCLR

Syntax Example If (VLTALARMSTAT) then

 Print " alarm active ", VLTALARMSTAT

 VLTERRCLR

Endif

MCO 305 Command Reference
__ Command Reference __

130 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 VLTCONTROL

Summary Sets the VLT control word in MOTOR OFF state

Syntax VLTCONTROL control word value

Parameter value

Description VLTCONTROL allows setting the VLT control word while the system is in MOTOR OFF
state. This command can be used to set the control word to every value. The user
is responsible for the correct values (specially the bit DATA VALID).

The commands behave as follows. When using VLTCONTROL the first time, it will be
changed into User-Control mode. In this mode the control word is not influenced at
all. The user is responsible for the control word. As long as the system is in that
mode, OUTAN only influences reference, but not control word. It can be only
returned to normal mode by using a MOTOR ON command, or by starting a new
APOSS program.

Command Group CON

Cross Index MOTOR OFF, MOTOR ON, OUTAN

Syntax Example MOTOR OFF

 …

 VLTCONTROL 0x047C // activates drive

 OUTAN 0x1000

 …

MOTOR ON // disables user control of control word

 VLTERRCLR

Summary Clears a VLT-alarm

Syntax VLTERRCLR

Description The command VLTERRCLR clears a VLT-alarm without doing anything with an
existing option error. This command can be used everywhere in an APOSS program.

Command Group CON

Cross Index VLTALARMSTAT

Syntax Example If (VLTALARMSTAT) then

 Print " alarm active ", VLTALARMSTAT

 VLTERRCLR

Endif

 WAITAX

Summary Wait till target position is achieved

Syntax WAITAX

Description The WAITAX command has been designated for use with an active NOWAIT mode.
By use of this command in NOWAIT ON condition, it is possible to wait for further
program processing after a positioning command, until the axis has achieved its set
position.

Command Group CON

Cross Index NOWAIT ON/OFF, POSA, POSR, AXEND, STAT, WAITI

Syntax Example WAITAX /* Wait till the axis has ended motion */
WAIT AX /* Alternative form */

Program Sample WAIT_01.M, VEL_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 131

 WAITI

Summary Wait for defined input condition

Syntax WAITI n s

Parameter n = input number 1 – 8 or 16 – 33
s = expected condition: ON = High-Signal
 OFF = Low-Signal

Description The WAITI command waits before continuing the processing until the specified input
has got the desired signal level.

NB!:
If the expected input condition does not occur, then the program will remain 'stuck'
at this point.

A minimal signal length is required for the sure identification of a signal condition!

Please see the FC 300 Operation Instructions and FC 300 Design Guide for
information about the circuit and technical data for the inputs.

Command Group CON

Cross Index ON INT .. GOSUB, DELAY, WAITT, WAITAX

Syntax Example WAITI 4 ON /* Wait till high level reached input 4 */
WAITI 4 1 /* 3 alternative forms */
WAIT I 4 ON
WAIT I 4 1

Syntax Example WAITI 6 OFF /* Wait till Low level reached input 6 */
WAITI 6 0 /* 3 alternative forms */
WAIT I 6 OFF
WAIT I 6 0

Program Sample WAIT_01.M

 WAITNDX

Summary waits until the next index position is reached

Syntax WAITNDX t

Parameter t = time-out in ms

Description Waits for the index while checking time-out. The program waits until either the
index of the axis is found or the time (time-out) is exceeded.

NB!:
If the time is exceeded then an error is triggered which can be evaluated with a ON
ERROR function.

NB!:
The command WAITNDX can not be used with absolute encoders (see par. 32-00
Incremental Signal Type).

Command Group CON

Cross Index WAITI, WAITP, INDEX

Syntax Example CVEL 1
CSTART
WAITNDX 10000
 /* Waits a maximum of 10 s for the axis to reach the index position */
OUT 1 1

MCO 305 Command Reference
__ Command Reference __

132 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 WAITP

Summary waits until a certain position is reached

Syntax WAITP p

Parameter p = absolute position being waited for

Description The WAITP command causes the program to wait until position p is reached. If,
from the speed and the current position, it follows that the point p has already been
exceeded then the command is also terminated.

NB!:
Active ON INT or ON PERIOD commands can affect the precision and reproducibility.

Command Group CON

Cross Index DELAY, WAITI, WAITAX

Syntax Example NOWAIT ON
POSA 10000
WAITP 5000 /* wait for position 5000 */
OUT 1 1 /* set output 1 */
NOWAIT OFF

 WAITT

Summary Time delay

Syntax WAITT t

Parameter t = delay time in milliseconds (maximum MLONG)

Description The WAITT command is suitable for achieval of a defined program time delay. The
inputted parameter shows the delay time in milliseconds.

NB!:
If an interrupt occurs during the delay time, then the entire delay procedure will be
re-begun following the processing of the interrupt.

The DELAY command is preferable to the WAITT command, because of its constant
time behavior.

Command Group CON

Cross Index DELAY, WAITI, WAITAX

Syntax Example WAITT 5000 /* wait 5 seconds */
WAIT T 5000 /* alternative form */

Program Sample WAIT_01.M

MCO 305 Command Reference
__ Command Reference __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 133

 WHILE .. DO .. ENDWHILE

Summary Conditional loop with start criteria. (While condition is fulfilled, repeat …)

Syntax WHILE (condition) DO
ENDWHILE

Parameter condition = abort criteria

Description By using the WHILE .. ENDWHILE construction you can repeat the enclosed
program area one or more times, dependent on any criteria. The loop critera are
made up of one or more comparison operations, and are always monitored at the
start of a loop. When a negative result already appears at the first monitoring, this
can cause an omission of the commands within the loop, and the program will
continue after the ENDWHILE instruction.

NB!:
Depending on the loop criteria, it can happen that the contents of the loop will
never be processed.

To avoid an endless loop, the processed commands within the loop must have a
direct or indirect influence on the result of the abort check.

Command Group CON

Cross Index LOOP, REPEAT .. UNTIL

Syntax Example WHILE (A != 1 AND B == 0) DO
 command line 1
 command line n
ENDWHILE

Program Sample WHILE_01.M, INKEY_01.M

 _GETVEL

Summary Changes sample time for AVEL and MAVEL

Syntax var = _GETVEL t

The values are displayed in UU/s for AVEL or qc/s for MAVEL.

Parameter t = sample time in ms

Description With the _GETVEL command it is possible to change the sampling time for AVEL
and MAVEL. AVEL and MAVEL usually work with a sampling time of 20 ms. With this
sampling time the resolution is better. However, a new measurement is only
sampled every 20 ms.

The command _GETVEL lasts exactly as long as the assigned value, e.g.
_GETVEL 200 ca. 200 ms.

Command Group SYS

Cross Index AVEL, MAVEL

Syntax Example var = _GETVEL 200

 Thus, the measurement resolution is considerably better; however changes are only
seen after a delay of 200 ms.

MCO 305 Command Reference
__ Command Reference __

134 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 #INCLUDE

Summary Inclusion of file contents in the indicated program position

Description This #INCLUDE instruction has been replaced by the #include instruction of the
preprocessor.

Portability The syntax of the #include statement for versions of the APOSS IDE prior to version
MCO 5.00 is different. Prior to version MCO 5.00, the statement contained no
quotes. If an “old” program is opened using the updated APOSS IDE, then quotes
will be automatically added.

Command Group Preprocessor

Program Sample INCL_01.M + INCSTA01.M + INCPOS01.M + INCIN01.M

MCO 305 Command Reference

135 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Appendix

 What’s New in the Update Version starting with MCO 5.00?
Significant new functionality has been added to the APOSS IDE and much of the existing functionality has
been greatly enhanced. The MCO CAN Interface is supported. The major areas of change are described
below.

 APOSS Tools

Oscilloscope Tool

A new Oscilloscope tool has been added to APOSS. This is a graphical display tool that provides powerful
and comprehensive functions to help optimize controller parameters and debug executing programs. It
allows the user to “watch” any internal controller parameter, variable, or state while the controller is exe-
cuting. The Oscilloscope tool replaces the “Testrun” functionality which is now obsolete and has been
removed from APOSS.

Array Editor Tool

A new Array Editor tool has been added to APOSS. The Array Editor allows the user to conveniently view
and update all parameters and arrays in the controller using a list format. This list can be customized by the
user so that it can be used to configure user applications. The Array Editor can be used either from within
APOSS or as a stand-alone application.

Enhanced CAM Editor

The CAM Editor tool has been enhanced as follows:

– The default file extension for configuration files has been changed from “.cnf” to “.zbc”. However, “.cnf”
files are still accepted. This change was done to avoid conflicts with the Microsoft-reserved file extension
of “.cnf”. Using “.zbc” allows APOSS to properly define a file type icon for Windows Explorer displays and
allows configuration files to be opened automatically in the standard way by double-clicking on them.

– Basic window handling has been improved so that CAM Editor windows behave like normal windows. For
example, menus and toolbars work in the standard way and CAM Editor windows will “go to the
background” when other APOSS windows are selected. Configuration files are opened and saved using
the standard File menu items and toolbar buttons.

– The color of lines and points has been changed so that their types can be more easily identified. Tangent
lines and points are displayed in green while curve lines and points are display in red.

MCO 305 Command Reference
__ Appendix __

136 MG.34.R1.02 – VLT® is a registered Danfoss trademark

– A new curve type (GRAD - 3) has been added. This allows the user to specify the start and end gradients
of a curve.

– Two new segment types have been added: Trapezoid and 3rd order segments. These segment types can
be used to connect adjacent tangent segments.

Watch Window

The “Watch Window” has been enhanced as follows:

– The Watch Window is no longer implemented as a separate window (“Show Watch”). It is now embedded
directly in the APOSS Window as a splitter window and is available at all times. It can be controlled using
the menu and toolbar buttons in the standard way.

– Watched variables are maintained in the user's program file and will be re-added to the Watch Window
when a program is opened.

– ”double” variables and 2-dimensional arrays are now supported.

– Several limitations of the old Watch Window (e.g. a limit of 10 variables) have been removed.

 Enhanced APOSS Compiler

The APOSS compiler has been enhanced as follows:

– Compilations are now optimized for the specific controller for which they are compiled. This results in a
reduced command execution time and faster program cycle execution.

– The stack size can be defined in the Settings → Compiler dialog.

– SWITCH, CASE, BREAK constructs are supported.

– Two dimensional arrays are supported.

– Array copy is supported.

– Variables can be declared as “double” and “constant”.

– Post-increment (++) and post-decrement (--) operators are supported.

– Function declaration and function call is supported.

– Functions can have parameter lists and return a value.

– Local variables are supported

– Casting (long <-> double) of variable types is supported.

– ROUND and FABS commands are enhanced for variables of type “double”.

– New floating point commands for variables of type “double” are available:
sqrt(), sin(), grad(), rad(), ln(), exp, pi

 APOSS User Interface Changes

Among the more significant changes to the APOSS user interface, are the following:

– All the various tools (i.e. “CAM Editor”, “Oscilloscope”, etc.) have been moved under a new Tools menu.
These can also be accessed using toolbar buttons.

– All sample programs are now built into APOSS. They can be opened using the File → Sample menu
command.

– The Edit → Find in Files function will search for a string in files on disk.

– Next Bookmark, Previous Bookmark, and Toggle Bookmark commands have been added to the Edit
menu. This will allow the bookmark functionality within the editor to be used more easily.

– Single programs can now be deleted on the controller (using the Controller → Programs menu item).

– “Teach in” has been removed from the Command List [F12]. It is no longer supported.

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 137

 New Commands

The following new commands are supported in the APOSS programming language:

 Command Content

 APOSDIFF Overflow handling of incremental encoders in applications.

 CANDEL Deletes all or single CAN objects.

 CANIN Reads an object via the CAN bus.

 CANINI Initializes the necessary objects (PDOs) for data exchange of CANopen nodes,
or enables extended CANINI, CANIN function.

 CANOUT Sends message with an internal number.

 CPOSDIFF Overflow handling of incremental encoders in applications.

 DEFCANIN Defines a receive object.

 DEFCANOUT Defines a transmit object in the CAN controller.

 INGLB Reads a global CAN message via CAN bus.

 INMSG Reads CAN message from the buffer.

 IPOSDIFF Overflow handling of incremental encoders in applications.

 JERKFINVEL Calculates the final velocity for a jerk-limited stop with maximum
acceleration/deceleration.

 JERKSTOPDIST Calculates the necessary distance for a jerk-limited stop with max deceleration.

 LINKPDO Link the system variable with RxPDO and copy in the internal parameters, or
link part of an array into the PDO.

 LINKSDO Link TxPDO with internal system variable, or
link part of an array out of the PDO.

 MAPOSDIFF Overflow handling of incremental encoders in applications.

 MIPOSDIFF Overflow handling of incremental encoders in applications.

 MSGVAL Contains the second part of the last read CAN message.

 ON CANINPUT Calls up a subprogram when a CAN telegram type 'id' arrives.

 ON CANMSG GOSUB Calls up subroutine.

 ON DELETE..SETOUT Deletes all interrupts which set or reset an output.

 ON KEYPRESSED
GOSUB

Call up a subprogram when a LCP key is pressed or released.

 ON posint .. GOSUB Call up a subprogram when a position interrupt occurs.

 ON posint .. SETOUT
(TOIN)

Simulate a cam box (all types of POSINTs).

 OUTMSG Sends a CAN message.

 PDO Pseudo array for direct access to the CANopen PDOs.

 SDOREAD Reads SDO of a connected CANopen device.

 SDOREADSEG Segmented read of SDOs (unpacked).

 SDOREADSEGP Segmented read of SDOs (packed).

 SDOSTATE Checks the result of an active communication.

 SDOWRITE Sets SDO of a connected CAN-open device.

 SYNCMARKERSTART Resets a marker or resets marker handling.

 SWAPMENC This command is not supported anymore. The function is realized with SET
ENCODERTYPE and SET MENCODERTYPE, see par. 32-00 and 32-30.

 TESTSETDEST Defines the memory section for saving recorded data

MCO 305 Command Reference
__ Appendix __

138 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 Command Content

 TESTSETINDEX Specifies system variables for data recording

 TESTSETTIME Defines the sampling period for data recording

 TESTSETTYPE Defines “one time” or “cyclic” recording

 New and Extended Parameters

The following new axis parameters are supported:

 Parameter Content

 32-13 Enc.2 Control ENCCONTROL Configuration of position evaluation after a
change of encoder source.

 32-14 Enc.2 node ID Encoder node ID

 32-15 Enc.2 Guard Encoder CAN Guard

 32-43 Enc.1 Control MENCCONTRO
L

Configuration of master position
evaluation after a change of encoder
source.

 32-44 Enc.1 node ID Encoder node ID

 32-45 Enc.1 Guard Encoder CAN Guard

 32-73 Integral limit filter time KILIMTIME Time (ms) which is used to increase or
decrease the integral limit of the position
control loop up to KILIM.

 32-74 Position error filter time POSERRTIME Time frame [ms] for triggering position
error state.

 32-86 Acc. up for limited jerk JERKMIN Minimum time required before reaching
the maximum acceleration.

 32-87 Acc. down for limited jerk JERKMIN2 Acceleration ramp-down constant.

 32-88 Dec. up for limited jerk JERKMIN3 Deceleration ramp-up constant.

 32-89 Dec. down for limited jerk JERKMIN4 Deceleration ramp-down constant.

 33-32 Feed Forward Speed Adaptation SYNCFFVEL Velocity feed forward [per mill of VCMD]
for synchronization modes.

 33-33 Velocity Filter Window SYNCVFLIMIT Sync error window [qc] for automatic
deactivation of SYNCVFTIME.

 33-90 X62 MCO CAN node ID

CANNR CAN node ID

 33-91 X62 MCO CAN baud rate CANBAUD CAN Baud rate

 33-94 X60 MCO RS485 Serial termination RSTERMINATION

 33-95 X60 MCO RS485 serial baud rate RSBAUDRATE

Along with the new axis parameters, the description of the following parameters has been amended:

32-01 Incremental Resolution ENCODER, 32-60 Proportional Factor KPROP, 32-61 Derivative Value for PID
Control KDER, 32-62 Integral Factor KINT, 32-69 Sampling Time for PID control TIMER und 32-63 Limit
Value for Integral Sum KILIM.

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 139

 Technical Reference
This section documents data structures and compiler details which are only required in exceptional cases by
the user. For example, if an automatically generated programming is to be modified like a curve profile.

 Array Structure of CAM Profiles

Header

The header contains general information like

– Identification for curve array

– Version number for curve structure

– Type of curve

– Name of curve

– Index to curve information section

– Index to start/stop point section

– Index to fixed point section

– Index to interpolation point section

– Index to start/stop point indices (in interpolation section)

– Index to start/stop velocities (times 100000)

– Index to startpath interpolation points

– Index to stoppath interpolation points

Curve Information Section

This section of the array contains all information about the type of curve like

− Length of curve (master)

− Length of curve (slave)

− Number of fix points

− Number of Interpolation points (this gives the resolution)

− Type of interpolation

− Slave stop point, point where slave is positioned, when synchronization is stopped

− Correction start point (only valid for marker synchronization)

− Correction end point (only valid for marker synchronization)

− Maximum correction which is allowed (only valid for marker synchronization)

− Maximum start/stop path length (Size of start/stop path area) (min. 2)

− No of start/stop point pairs

− Maximum number of cycles per minute (Application information)

Curve Start/Stop Point Section

This section contains the start/stop points. Because the use of this point is up to the user, we just speak of
a path, which can be a start or a stop sequence. Every path consists of 2 points. If we are moving forward,
the path starts (start or stop) with the a-point and ends with the b-point. If we are moving backward, the
path starts with the b-point and ends with the a-point. So the user is able to tell us in the program, which
pair of points to use for starting or stopping, when he uses a STARTCURVE or STOPCURVE command.

– Path 1 (a – point)

– Path 1 (b – point)

– Path 2 (a – point)

– Path 2 (b – point), …

MCO 305 Command Reference
__ Appendix __

140 MG.34.R1.02 – VLT® is a registered Danfoss trademark

These points have to lie on interpolation points, so possibly the PC software has to adjust them according to
the interpolation resolution. This should not be a real restriction, because the interpolation points are
normally very dense. So for example if we have rotating master which makes one revolution per cycle and
we choose a cycle length of 3600 MU (1 MU = 1/10 degree). Let us further assume, that we choose the
number of interpolation points as 1200, than you have a resolution of 3 MU = 3/10 degree for defining your
start and stop points.

Fixed Point Section

This section contains the fix points, which were the basis for the interpolation calculation. These points
always consist of the following triple

– Master coordinate

– Slave coordinate

– Type of point (tangent, curve)

These points are defined by the user in MU units (see internal description). If you want to avoid, that the
real interpolation curve misses your fix points, you have to choose them in such a manner that they lay on
an interpolation point (see above). This can be forced through a snap function within the PC software.

Interpolation Point Section

This section contains a list of slave coordinates. They belong to master coordinates which are of equal
distance, given by the interpolation resolution.

Indices of Start/Stop Points

Here we have the indices of the start/stop points (see above) within the interpolation array. These are
necessary for the ease of start and stop recognition. We are waiting until start index for example equals the
actual index and direction of movement is correct. If both is true, we start synchronization. The same is
true for stopping.

Start Stop Velocities

To be able to calculate an appropriate starting or stopping path, we need the velocity we have to reach at
end (start) or we will have at the beginning (stop) in UU/MU units (Slave units per Master units).

Start / Stop Paths

This is the place for the interpolation points of the actual start and stop path. These points are calculated
when a SYNCCSTART or SYNCCSTOP command is executed, but we have to reserve the room right now.

 CAM Array Definition

 Index Name Unit Value Description

 General

 1 Identification (dec) 999.000.001 Number to identify array

 2 VersioNumber (dec) 100 Version as decimal (1.00 = 100)

 3 CurveType (dec) 0 0 = symmetrical;
1 = compatible

 4 CurveName 1 (4char) Nona Name of curve total 16 char.

 5 CurveName 2 (4char) meCu default is:

 6 CurveName 3 (4char) rve0 NonameCurve00001

 7 CurveName 4 (4char) 0001

 8 IndexCIF (dec) 16 Index to Curve Information Part

 9 IndexSTP (dec) 27 Index to Start/Stop point Part

 10 IndexFIP (dec) IndexSTP + Index to Fix point Part

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 141

 Index Name Unit Value Description

STPno*2

 11 IndexINP (dec) IndexFIP +
FixPointNo * 3

Index to Interpolation Point Part

 12 IndexSTPInd (dec) IndexINP +
InterpolPointNo

Index to StartStop Interpolation Indices

 13 IndexSTPVel (dec) IndexSTPInd
+STPno*2

Index to StartStop Velocities

 14 IndexSTIP (dec) IndexSTPVel
+STPno*2

Index to Startpath interpolation points

 15 IndexSTPIP (dec) IndexSTIP +
MaxStartStopLen

Index to Stoppath interpolation points

 Curve Information

 1 MasterCycleLen MU - Length of Curve in CurveMaster units

 2 SlaveCycleLen UU - Slave max. travel distance in CurveSlave units

 3 FixPointNo (dec) 4 Number of fix points (minimum 4)

 4 InterpolPointNo (dec) - Number of interpolation points (including first
and last, which correspond to the same
location)

 5 InterpolType (dec) 0 0 = cubic spline, 1 = periodic cubic spline

 6 SlaveStopPosition UU 0 Position, where slave stands after stopping

 7 CorrectionStartPoint MU 0 Position, where Correction may start

 8 CorrectionStopPoint MU MasterCycleLen Position, where Correction has to be finished

 9 MaximumCorrection UU - Maximum Correction which is allowed in one
cycle

 10 MaxStartStopLen (dec) 0 Maximum length of start/stop path (no of int.
points)

 11 StartStopNo (dec) 0 Number of start stop point pairs (n) (see below)

 12 MMaxCycles (dec) 0 Max. number of cycles per minute (application
info)

 13 MMarkerPos CM 0 Master Marker Position in curve

 14 SMarkerPos CS 0 Slave Marker Position in curve

 Start/Stop Point

 1 STPoint_1.a MU 0 Start (forward) / Stop (backward) point no. 1

 2 STPoint_1.b MU 0 Stop (forward) / Start (backward) point no. 1

 3 STPoint_2.a MU 0 Start (forward) / Stop (backward) point no. 2

 4 STPoint_2.b MU 0 Stop (forward) / Start (backward) point no. 2

 5 ... MU 0

 6 ... MU 0

 2*n-1 STPoint_n.a MU 0 Start (forward) / Stop (backward) point no. n

 2*n STPoint_n.b MU 0 Stop (forward) / Start (backward) point no. n

MCO 305 Command Reference
__ Appendix __

142 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 Index Name Unit Value Description

 Fix Point

 1 FixPoint_1.master MU 0 Fix point no. 1 - master coordinate

 2 FixPoint_1.slave UU - Fix point no. 1 - slave coordinate

 3 FixPoint_1.type (dec) C Fix point no. 1 - type of point (C = Curve Point,
T = Tangent Point

 4 ...

 5 ...

 6 ...

 3*n-2 FixPoint_n.master MU MasterCycleLen Fix point no. n - master coordinate

 3*n-1 FixPoint_n.slave UU - Fix point no. n - slave coordinate

 3*n FixPoint_n.type (dec) C Fix point no. n - type of point (C = Curve Point,
T = Tangent Point)

 Interpolation Point

 1 IntPoint_1 UU 0 Interpolation Point no. 1 - slave coordinate

 ...

 n IntPoint_n UU - Interpolation Point no. n - slave coordinate

 StartStop Indices

 1 STPoint_1.a-index (dec) 0 Index in Interpolation Array, corresponding to
Start point

 2 STPoint_1.b-index (dec) 0 Index in Interpolation Array, corresponding to
Start point

 3 ..

 StartStop Velocities

 1 STPoint_1.a-veloc. (dec) (*100000) Velocity (UU/MU * 100000) in Start point

 2 STPoint_1.b-veloc. (dec) (*100000) Velocity (UU/MU * 100000) in Start point

 ...

 StartPath Interpolation Points

 1 StartPoint_1 UU 0 Interpolation Point no. 1 - for start path

 ...

 n

 StopPath Interpolation Points

 1 StopPoint_1 UU 0 Interpolation Point no. 1 - for stop path

 ...

 n

MCO 305 Command Reference
__ Appendix __

143 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 Curve Arrays and Curve Types

Starting with MCO 5.00 no interpolation points are used anymore. So only the fix points are relevant for the
curve. When a SETCURVE is executed (or when the curve is really started), the coefficients for the corres-
ponding polynomials are calculated. Then, when the curve is running, the polynomials are calculated on the
fly, while driving.

This procedure allows the user to modify a curve on the fly within the application program. This can be done
by overwriting some of the values within the curve array. (See description of curve array in Illustrations.).
After that a SETCURVE must be executed to activate the modified curve. This curve is then started as soon
as the active curve ends, or immediately by replacing the active curve, if the new curve is of type
INTRPT_GRAD (see array description).

NB!:
The curve array is used by the internal SYNCC procedures as long as the curve is running. So you
should never modify the curve array of a running curve. To solve this problem you must have two
arrays which are used alternatively. That means while one curve is active, the next one can be

prepared and started. As soon as the new one is active (PFG_CWRAP changes), the old curve can be
modified again.

Type of Fix points

Starting with MCO 5.00 there are new types of fix points. The way tangent points are used is changed. Now
the first fix point always tells what type of segment is following. So the last point is always of same type as
the first point.

There are new points like Poly3 and Trapezoidal which allow special segments within the curve to be used.

For new curves only the bold point types should be used.

#define CU_CPOINT 1 // Curve point (next segment is 3'rd or 5'th order polynomial).

#define CU_T1POINT 2 // Tangent start point (replaced by CU_TPOINT).

#define CU_T2POINT 3 // Tangent end point (replaced by CU_CPOINT).

#define CU_TPOINT 4 // Next segment is a tangent segment.

#define CU_ZPOINT 5 // Next segment is a trapezoidal segment.

#define CU_3POINT 6 // Next segment is a 3'rd order polynomial.

So you can, for example, create sequences like .. 4 – 5 – 4 – 5 which means that you will have two straight
lines (tangents) which are connected by two parabolas. Those two parabolas meet each other in the middle
between the fix points and at all three points (start, middle, end) of the segments, the velocity is the same
as the adjacent segment.

The following new curve types can be used by changing the array.

New Curve type 3 – CU_GRAD

Starting with MCO 5.00 another type of curve (3) is supported. This curve consists of only 2 fix points and is
calculated as a polynomial of 5th order. Therefore, the following values were added at the end of the fix
point area in the curve array (G_CFPIdx is the index of the fix point area):

 RestartCurve[3] = 3 // Curve type
 RestartCurve[G_CFPIdx+0] = 0 // Master start coordinate
 RestartCurve[G_CFPIdx+1] = 0 // Slave start coordinate
 RestartCurve[G_CFPIdx+2] = 1 // Fix Point Type = curvepoint
 RestartCurve[G_CFPIdx+3] = G_ShingleDistance * 4 // Master end coordinate
 RestartCurve[G_CFPIdx+4] = G_ShingleDistance * 2 // Slave end coordinate
 RestartCurve[G_CFPIdx+5] = 1 // Fix Point Type = curvepoint
 RestartCurve[G_CFPIdx+6] = 0 // Velocity v0
 RestartCurve[G_CFPIdx+7] = 1 // Divisor v0
 RestartCurve[G_CFPIdx+8] = 0 // Acceleration a0

MCO 305 Command Reference
__ Appendix __

144 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 RestartCurve[G_CFPIdx+9] = 1 // Divisor a0
 RestartCurve[G_CFPIdx+10] = 0 // Jerk j0
 RestartCurve[G_CFPIdx+11] = 1 // Divisor j0
 RestartCurve[G_CFPIdx+12] = 1 // Velocity v1
 RestartCurve[G_CFPIdx+13] = 1 // Divisor v1
 RestartCurve[G_CFPIdx+14] = 0 // Acceleration a1
 RestartCurve[G_CFPIdx+15] = 1 // Divisor a1
 RestartCurve[G_CFPIdx+16] = 0 // Jerk j1
 RestartCurve[G_CFPIdx+17] = 1 // Divisor j1

That means we have the possibility to define start and end gradients and acceleration for the polynomial.
(Jerk is ignored at the moment. Designed for future use.)

In this array, the start coordinates are only for display purposes because they are replaced by the actual
values when the curve is started. (see below)

As a result of this behavior of type 3 curves (predefined end values and calculated start values), they
normally cannot be continued when they reach the end (since typically the velocities do not match). There-
fore, they are normally continued by another standard curve. If for any reason they are not continued by
another curve, they will just try to continue with the actual velocity. This is done with a poly5 looking more
or less like a straight line.

NB!:
This continuation overwrites the original curve array with this continuation curve.

Continuation did not work for curves with more than 2 fix points prior to 6.7.11. In those versions,
there was also an error when CU_GRAD curves with more than 2 fix points where used as a

continuation curve.

New Curve type 4 CU_GRAD_INTRPT

Type 4 is available starting with MCO 5.00. This type is nearly identical to type 3 (CU_GRAD).

The big difference with curves of type CU_GRAD_INTRPT is that they are started immediately when the
SETCURVE is executed. When this is done, the actual values for velocity and acceleration are used for the
calculation. The actual values of the MCPOS and CURVEPOS are subtracted from the end coordinates of the
curve before it is calculated (curves must always internally start at 0,0). This guarantees, that the original
end coordinates are absolute to the start of the interrupted curve.

For example, assume that a curve is running which starts at 0,0 and ends at 2000,2000 (master,slave).
Now we define a curve of type CU_GRAD_INTRPT, which starts anywhere and ends at 4000,4000. If this
curve is now set by SETCURVE at the moment when the original curve passes 1500,1800, for example, then
the new curve is calculated in such a manner that it starts at this point (1500,1800) and ends at
4000,4000. To realize this, it uses the velocity and acceleration in the actual point, sets MCPOS and
CURVEPOS to 0 and reduces the end coordinates to (4000-1500, 4000-1800) = (2500,2200). It will have
the defined velocity (v1) and acceleration (a1) defined in the curve array.

These types of curve are used for processes where the standard curve looks more or less like a straight line
(SYNCP / SYNCM behavior) and where the poly5 curves are used to align start or stop or restart processes
to defined points.

NB!:
The responsibility for the correctness of poly5 curve lies with the user / application. The firmware
does not do any plausibility test.

To allow readability by CAM-Editor, the CurveVersion (index 2) should be 102. Otherwise, the CAM
editor will not accept those new curves.

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 145

Curve type 3 – CU_GRAD with SYNCCSTART

Such curves (Poly 5) can now also be started with SYNCCSTART. This means the curve starts immediately
and does not wait for next marker. (In previous versions, it was only possible to start such a curve with
SYNCMSTART 2001.)

If such a curve is started now with SYNCCSTART, the user is responsible for the correct setting of the
endpoints. Startpoint is 0 which will be internally set to the actual command position. Hence, the curve
must be defined from 0 .. endpoint.

Example:

G_CFPIdx = StartCurve[10]
 // Array index, where fix point definition starts

 // 1. Fix Point must be 0/0,

 // because curve always has to start at this position
StartCurve[G_CFPIdx+0] = 0 // Master start coordinate

StartCurve[G_CFPIdx+1] = 0 // Slave start coordinate

StartCurve[G_CFPIdx+2] = 1 // Fix Point Type = curvepoint
StartCurve[G_CFPIdx+3] = G_ShingleDistance * 4

 // Master end coordinate

StartCurve[G_CFPIdx+4] = G_ ShingleDistance * 2
 // Slave end coordinate

StartCurve[G_CFPIdx+5] = 1 // Fix Point Type = curvepoint

StartCurve[G_CFPIdx+6] = 0 // Velocity v0
StartCurve[G_CFPIdx+7] = 1 // Divisor v0

StartCurve[G_CFPIdx+8] = 0 // Acceleration a0

StartCurve[G_CFPIdx+9] = 1 // Divisor a0
StartCurve[G_CFPIdx+10] = 0 // Jerk j0

StartCurve[G_CFPIdx+11] = 1 // Divisor j0

StartCurve[G_CFPIdx+12] = 1 // Velocity v1
StartCurve[G_CFPIdx+13] = 1 // Divisor v1

StartCurve[G_CFPIdx+14] = 0 // Acceleration a1

StartCurve[G_CFPIdx+15] = 1 // Divisor a1
StartCurve[G_CFPIdx+16] = 0 // Jerk j1

StartCurve[G_CFPIdx+17] = 1 // Divisor j1

SETCURVE StartCurve

….

SYNCC 0

SYNCCSTART 0

In such a case, when SYNCCSTART is executed, the 0 point of the curve is mapped onto the actual
command position. Also, the actual velocity is calculated (and start acceleration is set to zero).

MCO 305 Command Reference
__ Appendix __

146 MG.34.R1.02 – VLT® is a registered Danfoss trademark

Curve type 3 – CU_GRAD with SYNCCSTART and DEFSYNCORIGIN

In addition to the above mentioned possibility, you have the option to define the endpoints of the curve with
absolute values. So the start of such a curve could look like

mendpos = MIPOS + mdistqc

 // apos must be in qc

sendpos = (sdistqc % G_SlaveQcProProdukt) * G_SlaveQcProProdukt + SYSVAR[4098]
defsyncorigin mendpos sendpos

 // define target position for master and slave (in qc)

SYNCC 0

SYNCCSTART 0

In this case, the curve is again started immediately and the actual command position will be the Curve zero
position. However, the end position of master and slave are calculated in such a way that the curve will end
at the given absolute positions.

Final velocity is given by the curve (1 in our example above) and start velocity is taken from actual values.

Curve types CU_GRAD with stability check

Whenever the new curve types are calculated, a check for extremes within a poly5 is also done if possible.
(This only works if start acceleration is 0.) If an extreme within the interval is found, the curve error flag
PG_FLAG_CURVE_ERR is set and the error number is stored in the PFG_G_LastError which allows the user
to detect this situation. At the same time, the PFG_G_CPOLYMAXVEL [4288] and PFG_G_CPOLYMINVEL
[4289] (SU/MU) are stored. Writing to PFG_G_LastError [4258] clears the flag PG_FLAG_CURVE_ERR (Bit
64 <<24) in the STAT.

So a sample could look like.

IF((STAT x(1))&(64<<24)) THEN // error bit set
 switch(SYSVAR[4258])
 case 5 : PRINT “ Minimum in interval “,SYSVAR[4289] * 100 % 128

 break

 case 6 : PRINT “ Maximum in interval “,SYSVAR[4288] * 100 % 128
 break

 case 7 : PRINT “ Minimum in interval “,SYSVAR[4289] * 100 % 128

 PRINT “ Maximum in interval “,SYSVAR[4288] * 100 % 128
 break

 default : PRINT “ Other curve error “,SYSVAR[4258]

 endswitch
ENDIF

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 147

 Illustrations

Bin File Map (Compiler >= 6.7.0)

COD_VERSION (0)

Size of program header in bytes including command and sizeinfo.
7 - for CodeVersion < 5
8 - for CodeVerision >= 5 (all commands are now 2 bytes)

00

12

24

36

58

710

912

1014

......

nn

00

11

....

s-1s-1

ss

00

44

88

1212

1616

2020

2424

CodeVersion

COD_PRGHDR (119 / 0x77) - (0x77 0x00) (CodeVersion >= 5)

Size of Header information in Bytes

MaxVars (number of Variables defined in Aposs + 20)

Stacksize (size of stack defined in Aposs)

First command of the application program

........... more code

...............

COD_ENDE (127 / 0x7F) - (0x00 0x7F) (CodeVersion >= 5)

Filename[0] - 1st character of file name (s = strlen)

more characters

Filename[s-1] - last character of fname

Filename[s] - terminating \0 character

FirmwareVersion (long - 4 bytes)

Filename[1] - 2nd character of filename

Minfw (Minimum Firmware Version) (long 4 - bytes)

Cmpvers (Compiler Version) (long 4 - bytes)

filtime.dwHighDateTime (long 4 - bytes)

filtime.dwLowDateTime (long 4 - bytes)

InfoSize (in bytes) - l(long 4 bytes -- PC notation, LSB first)

0x55FF44EE - marks end of information section (LSB first)

?? Extra \0 if length of filename was odd

The complete filename is appended. The size of this block
is always even. There may be two \0 at the end if
necessary.

a number like 60650 means 6.06.50

minimum firmware version required for binary program

Compiler version used to produce binary code (i.e. 60520 means 6.05.20)

BinFileMap_6_5.vsd
2009-08-31-bi

Offset (Bytes)
CodeVersion >= 5

Offset (Bytes)
CodeVersion < 5

This section is only present (for compatibility with old versions) if MaxVars > 112.
This number is calculated as 92 + 20, where 92 is the number of variables in old
controllers and 20 is the number of temporary registers. This number was fix in old
controllers. And those controllers do not understand the PRGHDR command.

"File time" is the number of 100-nanosecond intervals that have elapsed
since 12:00AM, January 1, 1601 (UTC). This can be converted back to a
"nice" local time using the functions FileTimeToSystemTime() and
SystemTimeToTzSpecificLocalTime().

Size of info section - at the moment this is (s+1+20 or s+2+20)

CodeVersion is as follows
2 - firmware < 6.04.00 exesize had to be smaller than 65000
3 - firmware < 6.06.00
4 - new fp commands and optimizing commands
5 - firmware < 6.06.00 - commands and parameters are always 2 bytes , all jumps are

4 bytes.
6 - firmware >= 6.06.00 - firmware supports new posints and posintio (axes specific)

OnStatbit does support axes now.

All longs in the info section are in PC notation which means LSB first.

All longs in other sections are MSB first, for Codeversion < 7 which means firmware < 6.7.0
For firmware >= 6.7.01 Codeversion 7 is used and the Integers are ordered corresponding to the CPU.
That means MSB first for Motorola and LSB first for DSP.

Since version 6.06.00 (Codeversion >= 5) all commands
and parameters have at least 2 bytes. Therefore the end of
a program looks like 0x7f 0x00 now.

MCO 305 Command Reference
__ Appendix __

148

CurveArray (Long orientiert)

Identification (999.000.001)

defines handling of start / end velocities.
0 = start and end velocity is average,
1 = end velocity is set to start velocity (Hauser compatible).
2 = start and end gradients are set to 0 (5th order).
3 = start and end gradients are user defined (CU_GRAD)
4 = start and end gradients user defined (CU_GRAD_INTRPT) (starts immediately)

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

117

218

319

420

521

622

723

824

925

1026

1127

1228

1329

1430

1531

Version (101, 102)

CurveType Range is 0 .. 4

CurveName1 (4char)

CurveName2 (4char)

CurveName3 (4char)

CurveName4 (4char)

IndexCIF - CurveInformation - Default = 17

Index STP - Start-Stop Points Default = 31 (32 for Version 102)

Index FIP - Fixpoint Part Default STP+STPno*2

Index INP - Interpolation Part Default FIP + FixPointNo * 3

Index STPV - StartStopVel Default STP + STPno *2

Index STIP - StartPathInterpol Default STPV + STPno*2

Index STPIP - StopPathInterpol Default STIP + MaxStartStopLen

MasterCycleLen (MU) Length of Curve in Master Units

Index STPI - StartStopInerpInd Default INP + InterPolPointNo

SlaveCycleLen (UU) - Max. Slave travel dist in UU

FixPoint number Number of fix points (minimum 2)

InterpolPointNo Number of interpol points

Interpolation Type (0 = open, 1 = periodic, 2+3 spec)

SlaveStopPosition position slave has to be after stop

CorrectionStartPoint Pos. where correction may start

CorrectionStopPoint Pos. where correction has to stop

Maximum Correction maxmal allowed correction

MaxStartStopLen max length of start stop path

StartStopNo Number of start stop point pairs

MMaxCycles Max cycles per minute (info only)

MMarkerPos Master Marker Pos. in curve

SMarkerPos Slave Marker Pos in curve (cmd)

STPoint_1a Start Point Pair 1 - Point A

STPoint_1b Start Point Pair 1 - Point B

.........................

FixPoint_1.master Master Coordinate

FixPoint_1.slave Slave Coordinate

FixPoint_1.type Type (C = curve,
T = Tangent)

.........................

FixPoint_n.master Master Coordinate

FixPoint_n.slave Slave Coordinate

FixPoint_n.type Type (C = curve,
T = Tangent)

Interpolatio nSection (Interpolation Points, Start Stop Indices,
StartStop Velocities, StartPath Interpolation Points, StopPath
Interpolation Points)

1616 Extra Info Index (CU_GRAD / LBLINF - Optional Label Info)

Interpolation Types are interpreted as follows:
0 = open (only relevant for CAM - editor)
1 = periodic (only relevant for CAM - editor)
2 = Labeling - old version with precalculation
3 = Labeling - actual development version

optional Label Info, only used if Interpolation Type (see 21)
is >= 2
Since Version 102 used if CurveType(see 3) is CU_GRAD
(3) or CU_GRAD_INTRPT(4). In that case the extra info
contains start and stop gradients.

not used any more, because curves are calculated on the
fly now

internally overwritten by FixPoint_n.master - FixPoint_1.master

internally overwritten by (FixPoint_n.slave- FixPoint_1.slave)

maximum is 100 at the moment

not used any more, because curves are calculated on the fly now

wird im Moment nicht übergeben !! Stop ohne
CURVESTOP wird wohl nicht funktionieren

next 3 only relevant for marker correction

not used any more, because curves are calculated on the fly now

values are given in MU. Point A is where the stopping begins and B
is where it has to be finished. If driving backward, it is vice versa.

next 2 only relevant for marker correction

not used any more, because curves are
calculated on the fly now

Fixpoints are give in MasterUnits (master coordinate) or UserUnits (slave
coordinate). The type can be either
C = CurvePoint
T = TangentPoint
More then two curvepoints are interpolated by cubic spline functions. That means,
that a 3rd order Polynom connects two curvepoints in that way, that the position,
velocity and acceleration are identical in intermediate Curvepoints.
If there is only one CurvePoint followed by an TangentPoint ore a TangentPoint
followed by only one CurvePoint (endpoint) or two tangents following each other,
then we use 5th order polynoms to connect these points.

CurveArray_6_6_x.vsd
2008-05-24 bi

132

ExtraDataSize Size of extra Data (Version>=102)

StartVelocityNum used for Poly5 and Splines

StartVelocityDen

StartAccelerationNum (not used for Splines)

StartAccelerationDen (not used for Splines)

StartJerkNum (not used at the moment)

StartJerkDen (not used at the moment)

EndVelocityNum used for Poly5 and Splines

EndVelocityDen

EndAccelerationNum (not used for Splines)

EndAccelerationDen (not used for Splines)

EndJerkNum (not used at the moment)

EndJerkDen (not used at the moment)

At the moment length is 12

Velocity is used, if the CurveType is 3 or 4 (CU_GRAD or CU_GRAD_INTRPT) and curve
does not start with a tangent. If curve starts with a tangent, all other values are ignored too.

Acceleration is used, if the CurveType is 3 or 4 (CU_GRAD or CU_GRAD_INTRPT) and
curve starts with a Poly5.

Velocity is used, if the CurveType is 3 or 4 (CU_GRAD or CU_GRAD_INTRPT) and curve
does not end with a tangent. If curve ends with a tangent, all other values are ignored too.

Acceleration is used, if the CurveType is 3 or 4 (CU_GRAD or CU_GRAD_INTRPT) and
curve ends with a Poly5.

+

-
PT

G
_K

or
ru

nf
ilt

(4

24
5)

G
_S

ta
rtK

or
rR

es
t

(4
24

1)
+

-

G
_I

nt
M

M
E

rr
or

(4

25
2)

G
et

rie
be

U

m
re

ch
nu

ng

+

O
ld

M
Fi

ltv
el

 /
G

_M
pu

ls
es

(V
er

te
ilu

ng

au
f m

s
fü

r
Ta

kt
)

+

G
_K

or
rV

al

(4
21

3)

G
_K

or
rR

es
t

(4
21

2)

St
ar

tK
or

r
(4

24
0)

O
ld

M
Fi

ltv
el

 *

sy
nc

of
fti

m
 /

G
_M

pu
ls

es

Fa
lls

 S
ta

rtK
or

rR
es

t >
 0

R
E

G
_M

IP
O

S

(4
10

6)

G
_M

O
ld

Ze
ro

(4

19
9)-

G
_L

as
tM

M
D

is
t

(4
24

3)

G
_M

M
ar

ke
rD

is
t

(4
23

8) -

G
_M

D
ef

D
is

t
-

/
G

_M
M

ar
kC

or
r

(4
24

4)

G
et

rie
be

K

or
re

kt
ur

G
_M

ar
ke

rF
ilt

er

(4
25

0)

S
YN

C
M

P
U

LS
M

K
or

rV
al

 w
ird

 je
de

m

s
ad

di
er

t,
bi

s
K

or
rR

es
t 0

 w
ird

.

zu
b

m
ac

hi
ne

 c
on

tro
l a

g
M

ar
ke

rC
or

re
ct

io
n

w
ith

 M
FT

IM
E

V
er

si
on

en
 n

ac
h

6_
7_

16
30

.1
0.

20
09

 b
i

O
nl

y
av

ai
la

bl
e

si
nc

e
V

er
si

on

6_
4_

75
 a

nd
 if

S

YN
C

M
FP

AR
 &

 3
2

G
_M

M
ar

kE
rr

(4
25

3)

va
r

M
it

Sy
sv

ar
 le

sb
ar

 (i
nt

eg
er

)

va
r

M
it

S
ys

va
r l

es
ba

r (
 1

/1
28

)

G
_K

or
re

kt
ur

(4

21
1)

G
_K

or
rF

ilt
 (4

24
2)

pa
ra

m
Ac

hs
pa

ra
m

et
er

 (G
ET

 /
S

ET
)

S
YN

C
M

M
A

XC
O

R
R

G
_O

ld
M

fil
tv

el

(4
18

8) *
S

YN
C

M
FT

IM
E

S
YN

C
M

A
R

KM

/ /
3

R
EG

_I
M

AV
EL

(4

10
0)

SY
N

C
V

FT
IM

E
O

nl
y

ac
tiv

e
if

S
YN

C
VF

TI
M

E
le

ss
 th

an
 z

er
o

D
el

ta

m
as

te
rp

os
iti

on

To
 s

ca
le

 th
e

fil
te

r i
n

su
ch

 a
 w

ay
, t

ha
t t

he

tim
e

gi
ve

n
by

 th
e

us
er

 is
 a

bo
ut

 th
e

tim
e

a
ch

an
ge

ne

ed
s

to
 c

om
e

th
ro

ug
h

U
se

d
to

 re
sc

al
e

th
e

m
as

te
r i

np
ut

G
_D

yn
Ko

rrL
im

it
(4

25
5)

Li
m

it

(S
Y

N
C

M
P

U
LS

S
 *

SY
N

C
M

A
R

K
S

/ S
Y

N
C

O
FF

TI
M

E)
M

ax
im

al
e

Ko
rre

kt
ur

 p
ro

 m
s

G
_M

pu
ls

es
 /

G
_O

ld
M

Fi
ltv

el
Ze

it
di

e
fü

r e
in

en
 M

as
te

rta
kt

be

nö
tig

t w
ird

 in
 m

s

*

Li
m

it

Is
 s

et
 to

S

YN
C

M
FT

IM
E

 /
30

0
if

S
YN

C
M

FP
AR

 &
 1

if
S

YN
C

M
FP

A
R

 &
 4

w

e
us

e
SY

N
C

M
P

U
LS

*

SY
N

C
M

A
R

K
S

/
G

_M
ar

ke
rF

ilt
er

G
_L

as
tM

M
D

ev
ia

tio
n

(4
27

8)

PT

PT

-
PT

G
_I

nt
SM

Er
ro

r
(4

27
9)

-

R
E

G
_Z

ER
O

(4

09
8)

G
_S

O
ld

Ze
ro

(4

20
0)

-

G
_L

as
tS

M
D

is
t

(4
24

9)

G
_S

M
ar

ke
rD

is
t

(4
23

9)
-

G
_S

M
ar

kE
rr

(4
28

0)

G
_L

as
tS

M
D

ev
ia

tio
n

(4
28

1)

PT

E
in

ga
ng

s-
va

r

Au
sg

an
gs

-v
ar

Au
sg

an
gs

 G
rö

ss
e

Pr
oz

es
s

E
in

ga
ng

s
G

rö
ss

e
Pr

oz
es

s

G
_S

M
ar

ke
rF

ilt
er

(4

92
0)

G
_V

cm
d

(4
18

6) *
S

YN
C

M
FT

IM
E

SY
N

C
M

A
R

KS

/ /
3

To
 s

ca
le

 th
e

fil
te

r i
n

su
ch

 a
 w

ay
, t

ha
t t

he

tim
e

gi
ve

n
by

 th
e

us
er

 is
 a

bo
ut

 th
e

tim
e

a
ch

an
ge

ne

ed
s

to
 c

om
e

th
ro

ug
h

M
in

(1
00

)

M
in

(1
00

)

MCO 305 Command Reference
__ Appendix __

150 MG.34.R1.02 – VLT® is a registered Danfoss trademark

 Index

#INCLUDE.. 134

[
[Esc] key.. 122

_
_GETVEL .. 133

A
Abbreviations..5

ACC ...8

APOS ...9

APOSDIFF...10

APOSS Compiler enhancements 136

APOSS Tools ... 135

APOSS User Interface Changes 136

Array Structure of CAM Profiles 139

AVEL..10

AXEND ...11

C
CAM Array Definition.. 140

CANDEL ...12

CANIN..12

CANINI ..14

CANOUT ...15

COMOPTGET ...16

COMOPTSEND...16

CONTINUE..17

CPOS ...17

CPOSDIFF...18

CSTART..18

CSTOP ...19

Curve Arrays... 143

Curve Types ... 143

CURVEPOS ...20

CVEL..21

D
DEC ...21

DEFCANIN ..22

DEFCANOUT ...22

DEFCORIGIN...23

DEFMCPOS ...23

DEFMORIGIN ..24

DEFORIGIN...24

DEFSYNCORIGIN ...25

DELAY..27

DELETE ARRAYS ..27

DIM ...28

DISABLE … interrupts...29

E
ENABLE ... interrupts ...31

ENCPOSOFFS ..32

ENCTGREAD..33

ENCTGWRITE ..34

ERRCLR..34

ERRNO ...35

EXIT ..35

G
GET ...36

GETVLT ..37

GETVLTSUB ..37

GOSUB...38

GOTO...38

H
HOME...39

I
IF . .THEN . . , ELSEIF . . THEN . . ELSE . . ENDIF40

Illustrations .. 147

IN..41

INAD..42

INB..43

INDEX..44

INGLB ..44

INKEY ..45

INMSG ...46

IPOS ..47

IPOSDIFF ...48

J
JERKFINVEL ..49

JERKSTOPDIST..49

L
LINKGPAR...50

MCO 305 Command Reference
__ Appendix __

 MG.34.R1.02 – VLT® is a registered Danfoss trademark 151

LINKPDO ..51

LINKSDO..52

LINKSYSVAR...54

Literature ...4

LOOP ...55

M
MAPOS...55

MAPOSDIFF ..56

Master Units [MU] ...6

MAVEL ...56

MENCPOSOFFS..57

MENCTGREAD ...57

MENCTGWRITE ...58

MIPOS..59

MIPOSDIFF ...60

MLONG ..5

MOTOR OFF ..60

MOTOR ON ...61

MOTOR STOP ..61

MOVESYNCORIGIN ..62

MSGVAL ...62

N
New and Extended Parameters.............................. 138

New Commands .. 137

NOWAIT ...63

O
ON CANINPUT ...64

ON CANMSG GOSUB ..64

ON COMBIT .. GOSUB ..65

ON DELETE .. GOSUB...66

ON DELETE .. SETOUT..67

ON ERROR GOSUB...68

ON INT . . GOSUB..69

ON PARAM .. GOSUB..71

ON PERIOD...72

ON posint . . GOSUB ..73

ON posint . . SETOUT (TOIN)75

ON STATBIT .. GOSUB ...76

ON TIME...77

OUT...78

OUTAN...79

OUTB ...80

OUTDA...81

OUTMSG ..82

P
PCD ...82

PDO...83

PID ..86

POSA ...86

POSA CURVEPOS...87

POSR ...87

PRINT ..88

PRINTDEV...88

PULSACC ..89

PULSVEL...90

Q
Quad-counts ...5

R
REPEAT .. UNTIL ...90

RSTORIGIN...90

S
SAVE part...91

SAVEPROM ...91

SDOREAD...92

SDOREADSEG ...93

SDOREADSEGP ...94

SDOSTATE..95

SDOWRITE ...96

SET..96

SETCURVE ..97

SETMORIGIN...98

SETORIGIN...98

SETVLT ..99

SETVLTSUB...99

STAT.. 100

SUBMAINPROG . . ENDPROG 101

SUBPROG name . . RETURN 101

Symbols ...4

SYNCC ... 102

SYNCCMM... 104

SYNCCMS ... 105

SYNCCSTART .. 105

SYNCCSTOP.. 106

SYNCERR.. 107

SYNCM... 108

SYNCMARKERSTART .. 109

SYNCP.. 110

SYNCSTAT .. 111

SYNCSTATCLR... 112

SYNCV ... 113

System Process Data ... 114

SYSVAR.. 114

T
Technical Reference ... 139

MCO 305 Command Reference
__ Appendix __

152 MG.34.R1.02 – VLT® is a registered Danfoss trademark

TESTSETDEST... 115

TESTSETINDEX ... 117

TESTSETP... 119

TESTSETTIME ... 121

TESTSETTYPE ... 122

TESTSTART... 124

TESTSTOP .. 125

TIME.. 127

TRACKERR.. 127

U
User Units [UU]...6

USRSTAT.. 128

V
VEL.. 129

VLTALARMSTAT... 129

VLTCONTROL .. 130

VLTERRCLR... 130

W
WAITAX.. 130

WAITI .. 131

WAITNDX ... 131

WAITP.. 132

WAITT.. 132

WHILE . . DO . . ENDWHILE................................... 133

	How to Read this Command Reference
	 How to Read this Command Reference
	  Available Literature for FC 300, MCO 305, and MCT 10 Motion Control Tool

	 Symbols and Conventions
	  Abbreviations
	 Definitions
	 MLONG
	 Quad-counts

	  User Units
	User Units [UU]
	Master Units [MU]

	Command Reference
	  ACC
	  APOS
	  APOSDIFF
	 AVEL
	  AXEND
	  CANDEL
	 CANIN
	  CANINI
	 CANOUT
	  COMOPTGET
	 COMOPTSEND
	  CONTINUE
	 CPOS
	  CPOSDIFF
	 CSTART
	 CSTOP
	  CURVEPOS
	  CVEL
	 DEC
	 DEFCANIN
	 DEFCANOUT
	 DEFCORIGIN
	 DEFMCPOS
	  DEFMORIGIN
	 DEFORIGIN
	  DEFSYNCORIGIN
	  DELAY
	 DELETE ARRAYS
	  DIM
	  DISABLE … interrupts
	  ENABLE ... interrupts
	  ENCPOSOFFS
	  ENCTGREAD
	  ENCTGWRITE
	 ERRCLR
	  ERRNO
	 EXIT
	  GET
	  GETVLT
	 GETVLTSUB
	  GOSUB
	 GOTO
	 HOME
	  IF ..THEN .., ELSEIF .. THEN .. ELSE .. ENDIF
	  IN
	 INAD
	  INB
	  INDEX
	 INGLB
	  INKEY
	 INMSG
	  IPOS
	 IPOSDIFF
	  JERKFINVEL
	 JERKSTOPDIST
	  LINKGPAR
	  LINKPDO
	 LINKSDO
	 LINKSYSVAR
	  LOOP
	 MAPOS
	  MAPOSDIFF
	 MAVEL
	  MENCPOSOFFS
	 MENCTGREAD
	  MENCTGWRITE
	  MIPOS
	 MIPOSDIFF
	 MOTOR OFF
	  MOTOR ON
	 MOTOR STOP
	  MOVESYNCORIGIN
	 MSGVAL
	  NOWAIT
	  ON CANINPUT
	 ON CANMSG GOSUB
	  ON COMBIT .. GOSUB
	  ON DELETE .. GOSUB
	 ON DELETE .. SETOUT
	  ON ERROR GOSUB
	  ON INT .. GOSUB
	 ON KEYPRESSED GOSUB
	  ON PARAM .. GOSUB
	 ON PERIOD
	  ON posint .. GOSUB
	 ON posint .. SETOUT (TOIN)
	  ON STATBIT .. GOSUB
	  ON TIME
	  OUT
	 OUTAN
	  OUTB
	  OUTDA
	  OUTMSG
	 PCD
	  PDO
	  PID
	 POSA
	  POSA CURVEPOS
	 POSR
	 PRINT
	 PRINTDEV
	  PULSACC
	  PULSVEL
	 REPEAT .. UNTIL ..
	 RSTORIGIN
	  SAVE part
	 SAVEPROM
	  SDOREAD
	  SDOREADSEG
	  SDOREADSEGP
	  SDOSTATE
	  SDOWRITE
	 SET
	  SETCURVE
	  SETMORIGIN
	 SETORIGIN
	  SETVLT
	 SETVLTSUB
	  STAT
	  SUBMAINPROG .. ENDPROG
	 SUBPROG name .. RETURN
	 SYNCC
	  SYNCCMM
	  SYNCCMS
	 SYNCCSTART
	  SYNCCSTOP
	  SYNCERR
	  SYNCM
	  SYNCMARKERSTART
	  SYNCP
	 SYNCSTAT
	 SYNCSTATCLR
	  SYNCV
	  SYSVAR
	  TESTSETDEST
	  TESTSETINDEX
	  TESTSETP
	  TESTSETTIME
	  TESTSETTYPE
	  TESTSTART
	 TESTSTOP
	  TIME
	 TRACKERR
	 USRSTAT
	  VEL
	 VLTALARMSTAT
	  VLTCONTROL
	 VLTERRCLR
	 WAITAX
	  WAITI
	 WAITNDX
	  WAITP
	 WAITT
	  WHILE .. DO .. ENDWHILE
	 _GETVEL
	  #INCLUDE

	Appendix
	 What’s New in the Update Version starting with MCO 5.00?
	 APOSS Tools
	 Enhanced APOSS Compiler
	 APOSS User Interface Changes
	 New Commands
	 New and Extended Parameters

	  Technical Reference
	 Array Structure of CAM Profiles
	 CAM Array Definition
	 Curve Arrays and Curve Types
	Type of Fix points
	New Curve type 3 – CU_GRAD
	New Curve type 4 CU_GRAD_INTRPT
	 Curve type 3 – CU_GRAD with SYNCCSTART
	 Curve type 3 – CU_GRAD with SYNCCSTART and DEFSYNCORIGIN
	Curve types CU_GRAD with stability check

	
	 Index

