Cat. No. W451-E1-03

SYSMAC CP Series
CP1H-X40D[]-[|, CP1H-XA40D[I-[],
CP1H-Y20DT-D

CP1H/CP1L CPU Unit

PROGRAMMING MANUAL

SYSMAC CP Series

CP1H-X40D[-], CP1H-XA40D[-[],
CP1H-Y20DT-D

CP1H CPU Units

CP1L-L14DLI-[1, CP1L-L20D[J-[],
CP1L-M30D[-], CP1L-M40D[[]

CP1L CPU Units

Programming Manual
Revised May 2007

Notice:

OMRON products are manufactured for use according to proper procedures
by a qualified operator and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this
manual. Always heed the information provided with them. Failure to heed pre-
cautions can result in injury to people or damage to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also
capitalized when it refers to an OMRON product, regardless of whether or not
it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON
products, often means “word” and is abbreviated “Wd” in documentation in
this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, how-
ever, in some CX-Programmer displays to mean Programmable Controller.

Visual Aids

The following headings appear in the left column of the manual to help you
locate different types of information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 2005

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

Unit Versions of CP-series CPU Units

Unit Versions

Notation of Unit Versions

on Products

Confirming Unit Versions

with Support Software

vi

Note

Note

A “unit version” has been introduced to manage CPU Units in the CP Series
according to differences in functionality accompanying Unit upgrades.

The unit version is given to the right of the lot number on the nameplate of the
products for which unit versions are being managed, as shown below.

CP-series CPU Unit
Product nameplate D

OomrRoONn CP1H-XA40DR-A

CPU UNIT

Lot No. 28705 0000(Ver.1.0)
H_J

OMRON %poration MAS% IN JAPAN
/ \

Lot No. Unit version . .
(Example for Unit version 1.0)

The methods used to confirm the unit version for the CP-series CP1H and
CP1L CPU Units are somewhat different.
CP1H CPU Units

CX-Programmer version 6.1 or higher can be used to confirm the unit version
using one of the following two methods. (See note.)

» Using the PLC Information
* Using the Unit Manufacturing Information

CX-Programmer versions lower than version 6.1 cannot be used to confirm
unit versions for CP1L CPU Units.

CP1L CPU Units

CX-Programmer version 7.1 or higher can be used to confirm the unit version
using the PLC Information. (See note.) The Unit Manufacturing Informa-
tion cannot be used.

CX-Programmer versions lower than version 7.1 cannot be used to confirm
unit versions for CP1L CPU Units.

M PLC Information

Procedure When the Device Type and CPU Type Are Known

1,2,3... 1. If you know the device type and CPU type, select them in the Change PLC
Dialog Box, go online, and select PLC - Edit - Information from the
menus. The following Change PLC Dialog Box will be displayed.

Example for CP1H

Change PLC : |

— Device Mame

[MewPLLT

— Device Type
|cP1H v| Settings...

~[CPIL
CPMT[CPM14)
CPM2*

| CPM2:5* —
oMt

_ Selings.._|

__Setings.._|

Ca e
[~
_ teb |

Settings...

Cs10-H hd

(] I Cancel | Help

Example for CP1L

— Device Mame

{HewPLCT

— Device Type
|cPiL | Settings...

| CPMTCPMTA)
CPh2"
CPh2e5¢
—|CaMT

[CEMTH

_ Setings.._|

_ setings.._ |
[

_ M|

Settings...

C510-5 hd

(] I Cancel Help

vii

2. Click the Settings Button and, when the Device Type Settings Dialog Box
is displayed, select the CPU type.

Example for CP1H

Device Type Settings [CP1H] x|

General |

—CPU Type
& =

T
I‘ZUI == I | I_ Read Dn'_'rl

— Expanzion kemon

I j [T Fead/@nly

— File kermony
I j ™| Bead Dy
— Timer / Clock
¥ | [nztalled
b ake Default |
QE. I Cancel | Help |
Example for CP1L
Device Type Settings [CP1L] E ﬂ
General
—CPU Tope
M [
I L]
B T_
[10K [Step] | T ReadOnly
— Expanzion kemomn
I j ™| Fead Orly
— File kermony
I j [T Read @l
— Timer £ Clock
¥ [rstalled
take Default |
Ok I Cancel | Help

viii

3. Go online and select PLC - Edit - Information

Untitled - CX-Programmer - [[Stopped] - NewPLC1.NewProgram1.5ection] [Diagram]] =8| x

ile Edit Wiew Insert | PLC Program Tools Window Help ;IQII
DE M @& /& ko aon plalrma sl iR (AdeBERE |- w /e |
B ik Orfline Simulator CErl S
a % Q [ESE exsm saaRL&|[Ees | nis B PELEK |
OERRE g e 4 T]

Operating Mode
lame : NevProgrami]

Ivl

Manitar
8 MewPLCI[CPIL] St jame : Section1]
L:.!n) Symbols [#4] Compile &l PLC Programs F?
Settings Program Check Options... i
Error log Automatic Allatation . f ‘
PLC Clock Program Assignments f
Lot Memory —
= % Programs Function Block Memory.
| =S NewFrogrs Transfer

Partial Transfer

B END Protection
I Function Blocks Diear All Memary Areas

[rioran |
Change Mode] O 1/0 Table and Uit Setup
Seftings
[&] Memory, Card
Mermory Cassette/DM

bt Data Trace...
Time Chart Monitoring...

Force

;et J Errar Log

i Bt Expansion Instrictions =

| |4] < Memory | »
' Project / x4l Hame; [Clock s | Comment: |
Cycle Time

= = PLC NewPLCT [PLC Model TRTL M']
| ampiing

[PLC/Program Mame : MewPLCT/NewProgram1]
[Section Name : Sectionl]
[Gection Name - END]

NewFLE1 - 0 erors, 0 warnings
The programs have been checked with the pragram check option set ta Urit Ver. 1.0

T[T [ET, Corpile A Find Frepat J Transier | NS

Shows details of the online PLC i [MewPLC1{Met:0,Node:0) - Stop/Pragram Mode [[[rung 0o, 00 - 100% [i

The PLC Information Dialog Box will be displayed.
Example for the CP1H

PLC Information - NewPLC1 x|

Project FLC type: CPTH X

—&ctual Charactenistics

Type: CF1H
Unit %er.: | 1.0 I“ lﬂ\it version
Frogram memory: 21504 Steps

|Jzeable: 20886 Steps

Protected: Mo

Memarny type: -

File/mernary card: Ma
[ata memary: 3276R Words
Extension: I} Fiwfords
EM banks: 1]
Bank size: - Words
100 rernary: 11.5 Fafords
Timner/counters: g Kwiords

— Manufacturing Detailz

Fievision &

FCEB Revizion BCD
Software Revigion A& 0
Lot Mumber 050713

b anufacturing

Serial Mumber

Example for the CP1L

PLC Information - NewPLC1 = x|

Project PLC type: CPIL M

Actual Charactenistics
Tupe: CPILM

Wit “er.: E; Unit version
Frogram memory: 11264 Steps
|Jzeable: 10646 Steps
Protected: Mo
Memany type:
File/mernaory card: MHa
[ata memary: 327ER Words
Extenzion: 0 Kwiords
EM barks: 0
Bank size: - Words
100 mnnary: 11.5 Fafords
Tirmner/counters: 8 Kwiords

t anufacturing Detail:

Fevizion &

FCE Rewizion By
Software Revision &4 0
Lot Murnber 070323

b anufacturing

Sernial Mumber

Use the above display to confirm the unit version of the CPU Unit.

Procedure When the Device Type and CPU Type Are Not Known

This procedure is possible only when connected directly to the CPU Unit with
a serial connection.

If you don't know the device type and CPU type but are connected directly to
the CPU Unit on a serial line, select PLC - Auto Online to go online, and then
select PLC - Edit - Information from the menus.

The PLC Information Dialog Box will be displayed and can be used to confirm
the unit version of the CPU Unit.

PLC Information - NewPLC1 x|

Project PLC type: CPTH ¢

—&ctual Characternistics

Type: CF1H
Uriit Yer.: E; lﬂﬂt version
Proaram mamnary: 21504 Steps
|Jzeable: 20336 Steps
Pratected: Mo
Memory type:
File/memony card: Mo
Data memaony; 327E3 Wiords
Extension: a0 Kwfords
EM banks: 1]
Bank size: - Words
10 meman; 115 Fiwiords
Timer/counters: g Kwfords

— Manufacturing Details

Revizion &,

FCE Revizion BCD
Software Revigion Ad 0
Lot Murnber 050713

M anufacturing

Senial Mumnber

H Unit Manufacturing Information (CP1H CPU Units Only)

1,2,3... 1. In the 10 Table Window, right-click and select Unit Manufacturing infor-
mation - CPU Unit.

7 i PLC IO Table - NewPLC1 -1of =]
File Edit Yew Options Help
W Inner Board LIt Manuf acturing information
"W [0000] Main Ra Dip Switch Information
Start Special Application 3
CP1H-%40DR-A [Run 4

2. The following Unit Manufacturing information Dialog Box will be displayed.

Unit Manufacturing Information - rd X
File Help

— Manufacturing Detailz

Revision

PCE Rewizion
Software Revision
Lat Murnber 050713

W anufacturing 10

LA

Serial Mumnber
Unit Wer. 1.0 Unit version
Uit Text

There iz no Memon Card installed

[cPtH-% Run

Use the above display to confirm the unit version of the CPU Unit connected
online.

Using the Unit Version The following unit version labels are provided with the CPU Unit.
Labels

[ver. 1.0] [Ver.

—

(ver.1.0 | [ver

—

N=TavF7yFIc&kbda=y b+
DEEKEDERZEET L1
DINIJLTT,

WEIZHLT, HEORIEICAEY
T IERACESLL,

These Labels can be
used to manage
differences in the
available functions
among the Units.
Place the appropriate
label on the front of
the Unit to show what
Unit version is actually
being used.

These labels can be attached to the front of previous CPU Units to differenti-
ate between CPU Units of different unit versions.

xii

1

AN L AW

TABLE OF CONTENTS
PRECAUTIONSciiiiiiiiiiiiiiiieieeneenees.. Xxiii

Intended Audience.
General Precautions. . . .
Safety Precautions
Operating Environment P

Application Precautions.

TECAULIONS . . o ottt ettt et ettt et e

Conformance to EC DIreCtivesottt e et

SECTION 1

Programming Conceptsccovvtiirineeneennnns

1-1
1-2
1-3
1-4

Programming Concepts .
Precautions

Checking Programs

Introducing Function Blocks o

SECTION 2
T aASKS v it tititiiiititeeeeeeeeseseseanasaseseaness

2-1
2-2
2-3
2-4

Programming with Tasks
Using Tasks
Interrupt Tasks

CX-Programmer Operations for Tasks

SECTION 3

InStructiOnSooooooooooooooooooooooooooooooooooooooo

3-1
32
33
34
35
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17

Notation and Layout of Instruction Descriptions

Sequence Input Instructio

]

Sequence Output INSIIUCHONS oottt e e

Sequence Control INStruCtions. v vttt e et

Timer and Counter INStrUCHIONS o oottt e e et

Comparison Instructions

Data Movement INStruCtions oo ottt et

Data Shift Instructions. .

Increment/Decrement InStruCtions.ottt e

Symbol Math INStructionsottt e e

Conversion Instructions .
Logic Instructions

Special Math Instructions

Floating-point Math InStructions.ttt et e

Double-precision Floating-point Instructions,

Table Data Processing INStructionso.in it

Data Control Instructions

XXV
XXV
XXV
XXVi
XXVii

XXX

33
41
46

49
50
58
68
75

77
86
89

113

132

168

209

247

274

320

336

389

436

451

472

525

567

615

xiii

xiv

TABLE OF CONTENTS

3-18 SUDIOULINESot ittt ettt e e e e e e e 668
3-19 Interrupt Control InStructions i 692
3-20 High-speed Counter/Pulse Output InStructions.t 705
3-21 Step INStIUCHONS . .o\ttt e et e e e 751
3-22 Basic VO Unit InStructionsttt et 769
3-23 Serial Communications InStructionsot 805
3-24 Network INStruCtionst v it e e e 844
3-25 Display InStructions. 911
3-26 Clock INStIUCHIONSo\ttt e e e e e e e 918
3-27 Debugging INSIrUCHONSttt et et et e e 932
3-28 Failure Diagnosis INStUCIONSottt ittt e e et e e 936
3-29 Other INStrUCHIONS oottt e e e e e e 961
3-30 Block Programming Instructions. i 975
3-31 Text String Processing InStructionsottt 1008
3-32 Task Control InStructions.ottt e e 1040
3-33 Model Conversion INStrucCtionso. vttt i 1047

SECTION 4
Instruction Execution Times and Number of Steps....... 1065

4-1 Instruction Execution Times and Number of Steps., 1066

4-2 Function Block Instance Execution Time 1088

Appendices

A Instruction Classifications by Function 1091
B List of Instructions by Function Code i, 1099
C Alphabetical List of Instructions by Mnemonic, 1115

Index......cooviiiiiiiiiiiiiiiiiiiienennneennens... 1129

Revision Historyciiiiiiinnneeneeeeeee... 1139

About this Manual:

This manual describes programming the CP-series Programmable Controllers (PLCs) and includes
the sections described below. The CP1H and CP1L are advanced package-type PLCs based on
OMRON’s advanced control technologies and vast experience in automated control.

Please read this manual carefully and be sure you understand the information provided before
attempting to install or operate a CP1H or CP1L PLC. Be sure to read the precautions provided in the
following section.

Definition of the CP Series

The CP Series is centered around the CP1H and CP1L CPU Units and is designed with the same
basic architecture as the CS and CJ Series. The Special I/0 Units and CPU Bus Units of the CJ Series
can thus be used with the CP1H CPU Units. CJ-series Basic I/O Units, however, cannot be used.
Always use CPM1A Expansion Units or CPM1A Expansion 1/O Units when expanding the 1/O capacity
of CP1H or CP1L PLCs.

I/O words are allocated in the same way as the CPM1A/CPM2A PLCs, i.e., using fixed areas for inputs
and outputs.

CS/CJ/CP Series

CS1-H CPU Units

CS1H-CPULICIH CJ1H-CPULICH CP1H-XICICIC-]
CS1G-CPULILH CJ1G-CPULIOH CP1H-XAOOC-0
CJ1G -cpPuLILP CP1H-YOOOO-O

CS1 CPU Units (Loop CPU Unit)

_
CS1H-CPULIT] (V1)

_

CJ1M-CPULIC] CP1L-L14D[-[]

CS1D CPU Units CP1L-L20D-[]

CP1L-M30D-[]

]

CS1D CPU Units for
Duplex-CPU System CJ1 CPU Unit \ CP1L-M40D[-]
w CJ1G-CPULIL
CS1D CPU Units for
' Single-CPU System '
CP-series Expansion I/0 Units
CS1D-CPULITIP
N\ S ‘CP-series Expansion Units ‘
‘CS-series Basic I/O Units ‘ ‘Cd-series Basic I/O Units ‘ ‘CPM1A Expansion I/O Units ‘
‘CS-series Special I/0 Units ‘ ‘Cd-series Special I/O Units ‘ ‘CPM1A Expansion Units ‘
‘CS-series CPU Bus Units ‘ ‘ CJ-series CPU Bus Units ‘ ‘CJ-series Special I/0 Units (See note.)
CS-series Power Supply Units ‘CJ-series Power Supply Units ‘ ‘CJ-series CPU Bus Units (See note.) ‘
Note: Products specifically for the CS1D
Series are required to use CS1D Note: Can be used with only a CP1H
\ CPU Units. \\ / \ CPU Unit. /

XV

xvi

Precautions provides general precautions for using the Programmable Controller and related devices.
Section 1 describes the basic concepts required to program the CP1H.
Section 2 describes the operation of tasks and how to use tasks in programming.

Section 3 describes each of the instructions that can be used in programming CP-series PLCs.
Instructions are described in order of function.

Section 4 lists the execution times and number of steps for all instructions supported by the CP1H
PLCs, and describes the execution times for function block instances.

The Appendices provide lists of the programming instructions in order of function and in order of func-
tion number.

Related Manuals

The following manuals are used for the CP-series CPU Units. Refer to these manuals as required.

Cat. No. Model numbers Manual nhame Description
W451 CP1H-X40DU-[] SYSMAC CP Series | Provides the following information on the CP Series:
CP1H-XA40DLI-[] CP1Hand CP1LCPU |, Programming instructions
CP1H-Y20DT-D Unit Programming . .
CP1L-L14D-[] Manual Programming methods
CP1L-L20D[}-(] (This manual) " Tasks
CP1L-M30DLI-[] * File memory
CP1L-M40D0I-[] * Functions
Use this manual together with the CP Series CP1H
CPU Units Operation Manual (W450) and CP
Series CP1L CPU Units Operation Manual (W462)
W450 CP1H-X40DU-[] SYSMAC CP Series | Provide the following information on the CP Series:
CP1H-XA40DLI-[] CP1H CPU Unit * Overview, design, installation, maintenance, and
CP1H-Y20DT-D Operation Manual other basic specifications
W462 CP1L-L14DLI-[] SYSMAC CP Series e Features
CP1L-L20DCI-[] CP1L CPU Unit Oper- |, ; ;
CP1L-M30DC-(] ation Manual : fﬂySteT Conf'c?ur.a.t'o”
CP1L-M40D[-] ounting and wiring
*1/0 memory allocation
* Troubleshooting
Use this manual together with the CP1H Program-
mable Controllers Programming Manual (W451).
W461 CP1L-L14D0I- SYSMAC CP Series | Provides basic setup information for CP1L PLCs,
CP1L-L20DLI-] CP1L Introduction including the following.
CP1L-M30DLI-L] Manual * Basic configuration and part names
CP1L-M40D0I-[] . Iy
* Mounting and wiring procedures
* Programming, program transfer, and debugging
with the CX-Programmer
* Application programming examples using the
CP1L
W342 CS1G/H-CPULILH SYSMAC CS/CJ- Describes commands addressed to CS-series, and
CS1G/H-CPULILI-VA series Communica- CJ-series CPU Units, including C-mode commands
CS1D-CPULILIH tions Commands Ref- | and FINS commands.
gg]\?v%z%g?s erence Manual Note This manual describes on commands
CS1W-SCBZ1 VA/41-V1 address to CPU Units regardless of the com-
CJ1G/;-| CPUD_DH) munications path. (CPU Unit serial ports,
CI1G C;DUDDP Serial Communications Unit/Board ports, and
CP1 H-CPUDD Communications Unit ports can be used.)
CI1G _CPUDD Refer to the relevant operation manuals for
CJ1W-SCU21 VA/41-V1 information on commands addresses to Spe-
))) cial /0O Units and CPU Bus Units.
W446 WS02-CXPC1-E-V70 SYSMAC CX-Pro- Provides information on installing and operating the
grammer CX-Programmer for all functions except for function
Ver. 7.0 Operation blocks.
Manual
W447 WS02-CXPC1-E-V70 SYSMAC CX-Pro- Provides specifications and operating procedures
grammer Ver. 7.0 for function blocks. Function blocks can be used
Operation Manual with CX-Programmer Ver. 6.1 or higher and either a
Function Blocks CS1-H/CJ1-H CPU Unit with a unit version of 3.0 or
a CP1H CPU Unit. Refer to W446 for operating pro-
cedures for functions other than function blocks.
W444 CXONE-ALLIIC-E CX-One FA Inte- Provides an overview of the CX-One FA Integrated
grated Tool Package |Tool and installation procedures.
Setup Manual

xvii

xviii

Cat. No.

Model numbers

Manual name

Description

W445

CXONE-ALLILIC-E

CX-Integrator Opera-
tion Manual

Describes CX-Integrator operating procedures and
provides information on network configuration (data
links, routing tables, Communications Units setup,
etc.

W344

WS02-PSTC1-E

CX-Protocol Opera-
tion Manual

Provides operating procedures for creating protocol
macros (i.e., communications sequences) with the
CX-Protocol and other information on protocol mac-
ros.

The CX-Protocol is required to create protocol mac-
ros for user-specific serial communications or to
customize the standard system protocols.

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM 1S BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Xix

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

¢ Qutdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

* Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

¢ Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED
FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.

XX

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

xxi

xxii

PRECAUTIONS

This section provides general precautions for using the CP-series Programmable Controllers (PLCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operate a PLC system.

1 Intended Audience XXiv
2 General Precautions i XX1v
3 Safety Precautions.ttt e XXiv
4 Operating Environment Precautions XXVi
5 Application Precautionst XXVii
6 Conformance to EC Directives, XXX
6-1 Applicable Directivest XXX
6-2 (107 11<] o) XXX
6-3 Conformance to EC Directives., XXX
6-4 Relay Output Noise Reduction Methods XXX1

6-5 Conditions for Meeting EMC Directives when Using CP1,
CP-series, or CPM1A Relay Expansion I/O Units.............. XXXii

xxiii

Intended Audience

1

2

3

Xxiv

Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

* Personnel in charge of installing FA systems.
* Personnel in charge of designing FA systems.
* Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

Safety Precautions

/N\ WARNING

/\ WARNING

/\ WARNING

/\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

* Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

Safety Precautions

3

/\ WARNING

& Caution

& Caution

& Caution

& Caution

& Caution

& Caution

* The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

* The PLC or outputs may remain ON or OFF due to deposits on or burning
of the output relays, or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

* When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Not doing so may result in
serious accidents.

Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

Confirm safety at the destination node before transferring a program to
another node or editing the 1/0 area. Doing either of these without confirming
safety may result in injury.

Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in this manual. The loose screws may result in burning or
malfunction.

Do not touch anywhere near the power supply parts or I/O terminals while the
power is ON, and immediately after turning OFF the power. The hot surface
may cause burn injury.

Pay careful attention to the polarities (+/-) when wiring the DC power supply. A
wrong connection may cause malfunction of the system.

When connecting the PLC to a computer or other peripheral device, either
ground the 0 V side of the external power supply or do not ground the external
power supply at all. Otherwise the external power supply may be shorted
depending on the connection methods of the peripheral device. DO NOT
ground the 24 V side of the external power supply, as shown in the following
diagram.

24V Non-insulated DC power supply
[Twisted-pair
cable
Lex . VA V) G S
FG T—
CPU Unit FG Peripheral device FG
7 2

XXV

Operating Environment Precautions 4

4

XXvi

& Caution

& Caution

After programming (or reprogramming) using the IOWR instruction, confirm
that correct operation is possible with the new ladder program and data before
starting actual operation. Any irregularities may cause the product to stop
operating, resulting in unexpected operation in machinery or equipment.

The CP-series CPU Units automatically back up the user program and param-
eter data to flash memory when these are written to the CPU Unit. I/O mem-
ory (including the DM Area, Counter present values and Completion Flags,
and HR Area), however, is not written to flash memory. The DM Area, Counter
present values and Completion Flags, and HR Area can be held during power
interruptions with a battery. If there is a battery error, the contents of these
areas may not be accurate after a power interruption. If the contents of the
DM Area, Counter present values and Completion Flags, and HR Area are
used to control external outputs, prevent inappropriate outputs from being
made whenever the Battery Error Flag (A402.04) is ON.

Operating Environment Precautions

& Caution

& Caution

& Caution

Do not operate the control system in the following locations:

* Locations subject to direct sunlight.

* Locations subject to temperatures or humidity outside the range specified
in the specifications.

* Locations subject to condensation as the result of severe changes in tem-
perature.

* Locations subject to corrosive or flammable gases.

* Locations subject to dust (especially iron dust) or salts.

* Locations subject to exposure to water, oil, or chemicals.
* Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in
the following locations:

* Locations subject to static electricity or other forms of noise.
e Locations subject to strong electromagnetic fields.

* Locations subject to possible exposure to radioactivity.

¢ Locations close to power supplies.

The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Make sure that the operating environment is within the specified con-
ditions at installation and remains within the specified conditions during the
life of the system.

Application Precautions 5

5 Application Precautions

Observe the following precautions when using the PLC System.

&WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

* Always connect to 100 Q or less when installing the Units. Not connecting
to a ground of 100 Q or less may result in electric shock.

* Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

* Mounting or dismounting Expansion Units or any other Units

» Connecting or removing the Memory Cassette or Option Board
* Setting DIP switches or rotary switches

» Connecting or wiring the cables

* Connecting or disconnecting the connectors

&Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

* Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

* Mount the Unit only after checking the connectors and terminal blocks
completely.

* Be sure that all the terminal screws and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

* Wire all connections correctly according to instructions in this manual.

* Always use the power supply voltage specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

e Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

* Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction.

* Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

e Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

* Do not apply voltages to the input terminals in excess of the rated input
voltage. Excess voltages may result in burning.

* Do not apply voltages or connect loads to the output terminals in excess
of the maximum switching capacity. Excess voltage or loads may result in
burning.

xxvii

Application Precautions

5

xxviii

* Be sure that the terminal blocks, connectors, Option Boards, and other

items with locking devices are properly locked into place. Improper locking
may result in malfunction.

Disconnect the functional ground terminal when performing withstand

voltage tests. Not disconnecting the functional ground terminal may result

in burning.

Wire correctly and double-check all the wiring or the setting switches

before turning ON the power supply. Incorrect wiring may result in burn-

ing.

Check that the DIP switches and data memory (DM) are properly set

before starting operation.

Check the user program for proper execution before actually running it on

the Unit. Not checking the program may result in an unexpected opera-

tion.

Resume operation only after transferring to the new CPU Unit and/or Spe-

cial I/O Units the contents of the DM, HR, and CNT Areas required for

resuming operation. Not doing so may result in an unexpected operation.

Confirm that no adverse effect will occur in the system before attempting

any of the following. Not doing so may result in an unexpected operation.
* Changing the operating mode of the PLC (including the setting of the

startup operating mode).

* Force-setting/force-resetting any bit in memory.

» Changing the present value of any word or any set value in memory.
Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

Do not place objects on top of the cables. Doing so may break the cables.
When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

Before touching the Unit, be sure to first touch a grounded metallic object
in order to discharge any static buildup. Not doing so may result in mal-
function or damage.

Do not touch the Expansion 1/O Unit Connecting Cable while the power is
being supplied in order to prevent malfunction due to static electricity.

Do not turn OFF the power supply to the Unit while data is being trans-
ferred.

When transporting or storing the product, cover the PCBs with electrically
conductive materials to prevent LSIs and ICs from being damaged by
static electricity, and also keep the product within the specified storage
temperature range.

Do not touch the mounted parts or the rear surface of PCBs because
PCBs have sharp edges such as electrical leads.

Double-check the pin numbers when assembling and wiring the connec-
tors.

Wire correctly according to specified procedures.

Do not connect pin 6 (+5V) on the RS-232C Option Board on the CPU
Unit to any external device other than the NT-ALOO1 or CJ1W-CIF11 Con-
version Adapter. The external device and the CPU Unit may be damaged.

* Use the dedicated connecting cables specified in this manual to connect
the Units. Using commercially available RS-232C computer cables may
cause failures in external devices or the CPU Unit.

Application Precautions

5

Check that data link tables and parameters are properly set before start-
ing operation. Not doing so may result in unexpected operation. Even if
the tables and parameters are properly set, confirm that no adverse
effects will occur in the system before running or stopping data links.

Transfer a routing table to the CPU Unit only after confirming that no
adverse effects will be caused by restarting CPU Bus Units, which is auto-
matically done to make the new tables effective.

The user program and parameter area data in the CP-series CPU Unit is
backed up in the built-in flash memory. The BKUP indicator will light on
the front of the CPU Unit when the backup operation is in progress. Do
not turn OFF the power supply to the CPU Unit when the BKUP indicator
is lit. The data will not be backed up if power is turned OFF.

Do not turn OFF the power supply to the PLC while the Memory Cassette
is being written. Doing so may corrupt the data in the Memory Cassette.
The BKUP indicator will light while the Memory Cassette is being written.
With a CP1H CPU Unit, the 7-segment display will also light to indicate
writing progress. Wait for the BKUP indicator and 7-segment display to go
out before turning OFF the power supply to the PLC.

Before replacing the battery, supply power to the CPU Unit for at least 5
minutes and then complete battery replacement within 5 minutes of turn
OFF the power supply. Memory data may be corrupted if this precaution is
not observed.

Always use the following size wire when connecting I/O Units, Special I/O
Units, and CPU Bus Units: AWG22 to AWG18 (0.32 to 0.82 mm?).

UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries. Also,
always follow the replacement procedure provided in the manual.

Never short-circuit the positive and negative terminals of a battery or
charge, disassemble, heat, or incinerate the battery. Do not subject the
battery to strong shocks or deform the barry by applying pressure. Doing
any of these may result in leakage, rupture, heat generation, or ignition of
the battery. Dispose of any battery that has been dropped on the floor or
otherwise subjected to excessive shock. Batteries that have been sub-
jected to shock may leak if they are used.

Always construct external circuits so that the power to the PLC it turned
ON before the power to the control system is turned ON. If the PLC power
supply is turned ON after the control power supply, temporary errors may
result in control system signals because the output terminals on DC Out-
put Units and other Units will momentarily turn ON when power is turned
ON to the PLC.

Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

If the 1/0 Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)

XXix

Conformance to EC Directives 6

6
6-1

6-2

6-3

XXX

* Dispose of the product and batteries according to local ordinances as
they apply.
Have qualified specialists properly dispose of used batteries as industrial
waste.

m
X B
D rmsmEmEg,

Conformance to EC Directives

Applicable Directives

Concepts

Note

* EMC Directives
* Low Voltage Directive

EMC Directives

OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

The applicable EMC (Electromagnetic Compatibility) standard is EN61131-2.

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

Conformance to EC Directives

1,2,3...

The CP1H/CP1L PLCs comply with EC Directives. To ensure that the
machine or device in which the CP1H/CP1L PLC is used complies with EC
Directives, the PLC must be installed as follows:

1. The CP1H/CP1L PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for I/0O Units and CPU Units requiring DC power. The output
holding time must be 10 ms minimum for the DC power supply connected
to the power supply terminals on Units requiring DC power.

3. CP1H/CP1L PLCs complying with EC Directives also conform to
EN61131-2. Radiated emission characteristics (10-m regulations) may
vary depending on the configuration of the control panel used, other devic-
es connected to the control panel, wiring, and other conditions. You must
therefore confirm that the overall machine or equipment complies with EC
Directives.

Conformance to EC Directives

6-4

Relay Output Noise Reduction Methods

The CP1H/CP1L PLCs conforms to the Common Emission Standards
(EN61131-2) of the EMC Directives. However, noise generated by relay out-
put switching may not satisfy these Standards. In such a case, a noise filter
must be connected to the load side or other appropriate countermeasures
must be provided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.

Countermeasures

Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

Note

Countermeasure Examples

Refer to EN61131-2 for more details.

When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element
AC DC
CR method Yes Yes If the load is a relay or solenoid, there is | The capacitance of the capacitor must
— a time lag between the moment the cir- | be 1 to 0.5 uF per contact current of
- cuit is opened and the moment the load | 1 A and resistance of the resistor must
: e is reset. be 0.5 to 1 Q per contact voltage of 1 V.
@ So If the supply voltage is 24 or 48 V, insert | These values, however, vary with the
, 28 the surge protector in parallel with the | l0ad and the characteristics of the

load. If the supply voltage is 100 to
200V, insert the surge protector
between the contacts.

relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

xxxi

Conformance to EC Directives

Characteristic

Required element

The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current will
be converted into Joule heat by the
resistance of the inductive load.

This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.

The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Circuit Current
AC DC
Diode method No Yes
—
2
[T 53
Power k=ge}
supply
Yes Yes

Varistor method

Inductive
load

The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V, insert
the varistor in parallel with the load. If
the supply voltage is 100 to 200 V,
insert the varistor between the con-
tacts.

When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

6-5

Countermeasure 1

ouT X

COM

Providing a dark current of
approx. one-third of the rated
value through an incandescent
lamp

Countermeasure 2

R
ouT

+

COM

Providing a limiting resistor

Conditions for Meeting EMC Directives when Using CP1, CP-

series, or CPM1A Relay Expansion I/O Units

EN 61131-2 immunity testing conditions when using the CP1W-40EDR,
CPM1A-40EDR, CP1W-16ER or CPM1A-16ER with an CP1W-CN811 I/O
Connecting Cable are given below.

Recommended Ferrite Core

Ferrite Core (Data Line Filter): 0443-164151 manufactured by Nisshin Electric
Minimum impedance: 90 Q at 25 MHz, 160 Q at 100 MHz

TH e

Xxxii

‘47 32 —»‘ L— 33—

Conformance to EC Directives 6

Recommended Connection Method

1,2,3... 1. Cable Connection Method

2. Connection Method
As shown below, connect a ferrite core to each end of the CP1W-CN811
I/O Connecting Cable.

O

xxxiii

Conformance to EC Directives

XXXiv

SECTION 1
Programming Concepts

This section describes the basic concepts required to program the CP1H.

1-1 Programming CONCEPLS.ottt ettt et et e e e 2
I-1-1 Programsand Tasksc.oiuiiiininnnn.. 2
1-1-2 Basic Information on Instructions 4
1-1-3 Instruction Location and Execution Conditions. 6
1-1-4 Addressing I/O Memory Areas.c.oiiiinennnn.. 7
1-1-5 Specifying Instruction Operands 8
1-1-6 DataFormats.t 13
1-1-7 Instruction Variationscoiuiunininenennenen.. 17
1-1-8 Execution Conditionsouuiiriunininennnenan... 17
[-1-9 O Instruction Timingc.vuinint e nnnnan.. 19
1-1-10 Refresh Timing........... ...t 20
[-1-11 Program Capacitycvvnt vttt 22
1-1-12 Basic Ladder Programming Concepts 22
[-1-13 Inputting MNemMONICS . . . vt vt ettt ettt ie e e e 27
1-1-14 Program Examples i 28
[-2 Precautionsttt e 33
1-2-1 Condition Flags. i 33
1-2-2 Special Program Sections.covtiinnnnenan.. 38
1-3 Checking Programs. it 41
[-3-1 CX-Programmerouvt ettt 41
1-3-2 Program Checks with the CX-Programmer 42
1-3-3 Program Execution Check 43
1-3-4 Checking Fatal Errors. 45
1-4 Introducing Function Blocks. 46
1-4-1 Overviewand Features 46
1-4-2 Function Block Specifications 47
1-4-3 Files Created with CX-Programmer. 48

Programming Concepts

Section 1-1

1-1 Programming Concepts

1-1-1 Programs and Tasks

1,2,3...

Note

Tasks specify the sequence and interrupt conditions under which individual
programs will be executed. They are broadly grouped into the following types:

1. Tasks executed sequentially that are called cyclic tasks.
2. Tasks executed by interrupt conditions that are called interrupt tasks.

Interrupt tasks can be executed cyclically in the same way as cyclic tasks.
These are called “extra cyclic tasks.”

Programs allocated to cyclic tasks will be executed sequentially by task num-
ber and 1/O will be refreshed once per cycle after all tasks (more precisely
tasks that are in executable status) are executed. If an interrupt condition
goes into effect during processing of the cyclic tasks, the cyclic task will be
interrupted and the program allocated to the interrupt task will be executed.

Program A

Alosation
Interrupt condition
goes into effec Program B
< o o)
task 100 | :
Allocation

‘_
Program C

i

=
o
S
=
=
5

@ Program D
PO —

| I/O refreshing l
—

In the above example, programming would be executed in the following order:
start of A, B, remainder of A, C, and then D. This assumes that the interrupt
condition for interrupt task 100 was established during execution of program
A. When execution of program B is completed, the rest of program A would be
executed from the place where execution was interrupted.

With earlier OMRON PLCs, one continuous program is formed from several
continuous parts. The programs allocated to each task are single programs
that terminate with an END instruction, just like the single program in earlier
PLCs.

il

Programming Concepts

Section 1-1

Earlier system

One continuous l

subprogram

[

One feature of the cyclic tasks is that they can be enabled (executable status)
and disabled (standby status) by the task control instructions. This means that
several program components can be assembled as a task, and that only spe-
cific programs (tasks) can then be executed as needed for the current product
model or process being performed (program step switching). Therefore perfor-
mance (cycle time) is greatly improved because only required programs will
be executed as needed.

CP1H

Task 1

Tasks can be put into non-

———y Task2 l // executing (standby) status.

| I/O refreshing

]

Note

l 1/O refreshing l
I

A task that has been executed will be executed in subsequent cycles, and a
task that is on standby will remain on standby in subsequent cycles unless it is
executed again from another task.

Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

* All cards are read in a preset sequence starting from the lowest number.

* All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

¢ A card that is activated will remain activated and will be read in subse-
quent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

Programming Concepts Section 1-1

Earlier program: CP-series program:
Like a scroll Like a series of cards that can be activated
or deactivated by other cards.

0 = _

Activated | Deactivated

'3

1-1-2 Basic Information on Instructions

Programs consist of instructions. The conceptual structure of the inputs to and
outputs from an instruction is shown in the following diagram.

Power flow (P.F., execution condition) ———— L5 Power flow (P.F., execution condition) '
Instruction condition —— Instruction L |nstruction condition 2
Flags — » Flag
T l *1: Input instructions only.
Operands Operands *2: Not output for all instructions.

(sources) (destinations)

I y

Memory

Power Flow The power flow is the execution condition that is used to control the execute
and instructions when programs are executing normally. In a ladder program,
power flow represents the status of the execution condition.

Input Instructions

* Load instructions indicate a logical start and outputs the execution condi-
tion.

Outputs the
/ execution condition.

¢ Intermediate instructions input the power flow as an execution condition
and output the power flow to an intermediate or output instruction.

Qutputs the
/ execution condition.

DO
#1215

Programming Concepts

Section 1-1

Instruction Conditions

Output Instructions

Output instructions execute all functions, using the power flow as an execution
condition.

F LD power flow

ral
| \ / \ /
Input block Output block

Power flow for
output instruction

Instruction conditions are special conditions related to overall instruction exe-
cution that are output by the following instructions. Instruction conditions have
a higher priority than power flow (P.F.) when it comes to deciding whether or
not to execute an instruction. An instruction may become not be executed or
may act differently depending on instruction conditions. Instruction conditions
are reset (canceled) at the start of each task, i.e., they are reset when the task
changes.

The following instructions are used in pairs to set and cancel certain instruc-
tion conditions. These paired instructions must be in the same task.

Instruction Description Setting Canceling
condition instruction instruction
Interlocked An interlock turns OFF part of the program. Special conditions, such as |IL(002) ILC(003)
turning OFF output bits, resetting timers, and holding counters are in
effect.
BREAK(514) |Ends a FOR(512) - NEXT(513) loop during execution. (Prevents execu- | BREAK(514) | NEXT(513)
execution tion of all instructions until to the NEXT(513) instruction.)
Executes a JMP0(515) to JMEO(516) jump. JMPO(515) JMEO(516)
Block program | Executes a program block from BPRG(096) to BEND(801). BPRG(096) BEND(801)
execution
Flags In this context, a flag is a bit that serves as an interface between instructions.
Input flags Output flags

« Differentiation Flags
Differentiation result flags. The status of these flags
are input automatically to the instruction for all dif-
ferentiated up/down output instructions and the
DIFU(013)/DIFD(014) instructions.

*Carry (CY) Flag
The Carry Flag is used as an unspecified operand
in data shift instructions and addition/subtraction
instructions.

* Flags for Special Instructions
These include teaching flags for FPD(269) instruc-
tions and network communications enabled flags

« Differentiation Flags

* Condition Flags

* Flags for Special Instructions

Differentiation result flags. The status of these flags are output
automatically from the instruction for all differentiated up/down
output instructions and the UP(521)/DOWN(522) instruction.

Condition Flags include the Always ON/OFF Flags, as well as
flags that are updated by results of instruction execution. In user
programs, these flags can be specified by labels, such as ER, CY,
>, =, A1, AO, rather than by addresses.

These include MSG(046) execution completed flags.

Operands

Operands specify preset instruction parameters (boxes in ladder diagrams)
that are used to specify /O memory area contents or constants. An instruction
can be executed entering an address or constant as the operands. Operands
are classified as source, destination, or number operands.

Example
— MOV -] JMP

#0 ‘— S (source) &3 {— N (number)

DO ﬂ-— D (destination)

Programming Concepts Section 1-1

Operand types Operand Description
symbol
Source Specifies the address of the data | S Source Oper- | Source operand other than control
to be read or a constant. and data (C)

C Control data | Compound data in a source oper-
and that has different meanings
depending bit status.

Destination Specifies the address where data | D (R)
(Results) will be written.
Number Specifies a particular number used | N
in the instruction, such as a jump
number or subroutine number.
Note Operands are also called the first operand, second operand, and so on, start-
ing from the top of the instruction.
— MOV
#0 {— First operand
DO “-—Second operand
1-1-3 Instruction Location and Execution Conditions

The following table shows the possible locations for instructions. Instructions
are grouped into those that do and those do not require execution conditions.

Instruction type Possible location Execution Diagram Examples
condition
Input instructions | Logical start (Load | Connected directly | Not required. LD, LD TST(350),
instructions) to the left bus bar l LD > (and other
or is at the begin- symbol compari-
ning of an instruc- son instructions)
tion block.
Intermediate Between a logical | Required. AND, OR, AND
instructions start and the out- | TEST(350), AND
put instruction. ’--| I-—- I > (and other ADD
symbol compari-
son instructions),
UP(521),
DOWN(522),
NOT(520), etc.
Output instructions Connecteddirectly | Required. Most instructions
to the right bus including OUT and
bar. MOV(021).
Not required. END(001),
JME(005),
FOR(512),
ILC(003), etc.
Note (1) There is another group of instruction that executes a series of mnemonic

instructions based on a single input. These are called block programming
instructions. Refer to the CP-series CP1H/CP1L CPU Unit Programming
Manual for details on these block programs.

(2) If an instruction requiring an execution condition is connected directly to
the left bus bar without a logical start instruction, a program error will oc-
cur when checking the program on a CX-Programmer.

Programming Concepts

Section 1-1

1-1-4 Addressing I/O Memory Areas

Bit Addresses
oo
—E Bit number (00 to 15)
— Word address
(Leading zeros are omitted.)
Example: The address of bit 03 in word 0001 in the CIO Area would be as
shown below. This address is given as “CIO 1.03” in this manual.
1.03
Bit number (03)
Word address: CIO 1
Bit address:
WI)rd ClO 1.03 (CIO 1.03)
15 14 13 12 11 10 09 08 07 06 05 04 |03 02 01 00 <— Bitnumber
Ciloo0
CIO 1
Clo2

Word Addresses

Example: Bit 08 in word HO10 in the HR Area is given as shown below.
‘H10.08

L Bit number: 08

— Word address: H10

oo

— Word address
(Leading zeros are omitted.)

Example: The address of word 0010 (bits 00 to 15) in the CIO Area is given
as shown below. This address is given as “CIO 10” in this manual.

10

Word address

Programming Concepts Section 1-1

Example: The address of word W5 (bits 00 to 15) in the Work Area is given
as shown below.

W5

Word address

Example: The address of word D200 (bits 00 to 15) in the DM Area is given
as shown below.

D200

— Word address

1-1-5 Specifying Instruction Operands

Operand Description Notation Application
examples
Specifying bit | The word and bit numbers are specified 1.02 1.02
addresses directly to specify a bit (input bits). I _| —
HHHHDHL Bit number: 02
Bit number Word number: CIO 1
(00 to 15)
Word address
Note The same addresses are used to
access timer/counter Completion Flags
and Present Values. There is also only
one address for a Task Flag.
Specifying The word number is specified directly to spec- | 5 —{Mov(021)
word ify the 16-bit word. [
addresses 0o Word number: 3 3
D200
—E Word address D—200L
Word number: D200
Specifying The offset from the beginning of the area is @D300 —
indirect DM specified. The contents of the address will be MO\;(?m)
addresses in | treated as binary data (00000 to 32767) to Contents
Binary Mode | specify the word address in Data Memory al 256 @D300
(DM). Add the @ symbol at the front to specify |
an indirect ad-dress in Binary Mode. Specifies D256.
Add the @ symbol.
@DLJCIC]
=
Contents [] 00000 to 32767

(0000 to 7FFF hex)
D

Programming Concepts

Section 1-1

Operand Description Notation Application
examples
Specifying The offset from the beginning of the area is *D200]
indirect DM specified. The contents of the address will be MOv(e21)
addresses in |treated as BCD data (0000 to 9999) to specify 0 1 00 | Contents #1
BCD Mode the word address in Data Memory (DM). Add BCD 100 *D200
an asterisk (*) at the front to specify an indirect
address in BCD Mode. Specmes D100.
"DOLEE Add an asterisk ().
00000 to 9999
Contents (BCD)
0
Specifyinga | Anindex register (IR) or a data register (DR) is | IRO —IMOVR(60)
register specified directly by specifying IRL] (LI: O to
directly 15) or DRI ((J: 0 to 15). 1.02
IRO
Stores the PLC
memory
address for
CIO 10inIRO.
IR1 —MOVR(560)
10
IR1
Stores the PLC
memory
address for
CIO 10inIR1.
Operand Description Notation Application examples
Specifying Indirect The bit or word with the PLC memory ,IRO IRO
an indirect | address address contained in IRL] will be speci- _| =
address (No offset) |fied.
using a reg- Specify ,IRC] to specify bits and words Loads the bit with the PLC memory
ister for instruction operands. address in IRO.
JIR1 —{MOV(021)
#1
JIR1
Stores #0001 in the word with the PLC
memory in IR1.
Constant | The bit or word with the PLC memory +5,IR0 +5.1R0
offset address in IRL] + or — the constant is _| —
specified.
Specify +/- constant ,IRL]. Constant off- Loads the bit with the PLC memory
sets range from —2048 to +2047 (deci- address in IRO + 5.
mal). The offset is converted to binary]
data when the instruction is executed. | +31,IR1 MOV(021)
#1
+31 ,IR1
Stores #0001 in the word with the PLC
memory address in IR1 + 31

Programming Concepts

Section 1-1

Note The auto decrement operation will
not be executed for a CP1L CPU
Unit if a P_ER or P_AER error
occurs during instruction execu-
tion.

Operand Description Notation Application examples
Specifying DR offset | The bit or word with the PLC memory DRO,IRO DRO.IRO
an indirect address in IRL] + the contents of DR is — |—
address specified.
using a reg- Specify DR ,IRC]. DR (data register) Loads the bit with the PLC memory
ister contents are treated as signed-binary address in IR0 + the value in DRO.
data. The contents of IRL] will be given a]
negative offset if the signed binary value | PROIR1 MOV(021)
is negative. #1
DRO ,IR1
Stores #0001 in the word with the PLC
memory address in IR1 + the value in
DRO.
Auto Incre- | The contents of IR[] is incremented by | ,IRO ++
; IR0 ++
ment +1 or +2 after referencing the value as —
an PLC memory address.
+1: Specify ,IRLI+ Increments the contents of IR0 by 2
+2: Specify ,IRL] + + after the bit with the PLC memory
Note The auto increment operation will address in IR0 is loaded.
not b_e executed fora CP1L CPU | |Rq 4 —Mov(021)
Unit if a P_ER or P_AER error
occurs during instruction execu- #1
tion. JR1 +
Increments the contents of IR1 by 1
after #0001 is stored in the word with
the PLC memory address in IR1.
Auto Dec- | The contents of IRL]is decremented by |,——IRO R
rement —1 or -2 after referencing the value as —| —
an PLC memory address.
—1: Specify ,—IRL] After decrementing the contents of IR0
—2: Specify ,— —IRL] IR1 by 2, the bit with the PLC memory

address in IR0 is loaded.

—{Mov(021)
#1
—IR1

After decrementing the contents of IR1
by 1, #0001 is stored in the word with
the PLC memory address in IR1.

10

Programming Concepts

Section 1-1

Data Operand Data form Symbol Range Application example
16-bit con- | All binary data or | Unsigned binary | # #0000 to #FFFF | MOV(021)
stant a limited range of

binary data #5A
D100
Signed decimal |+ -32768 to —]
+32767 +400)
D200
-128
D300
Unsigned deci- | & &0 to &65535 —{CMP(020)
mal
D400
&999
AllBCD dataora |BCD # #0000 to #9999 | | “B(414)
limited range of
BCD data D500
#2000
D600
32-bit con- | All binary data or | Unsigned binary | # #00000000 to —IMovise)
stant a limited range of #FFFFFFFF
binary data #17FFF
D100
Signed binary + —21474836481t0 | |
+2147483647 +Luol)
D200
—65536
D300
Unsigned deci- | & (See Note.) &0 to —]
mal 8429467295 CMPLO5O)
D400
&99999
AllBCD dataora |BCD # #00000000 to —{BL(415)
limited range of #99999999
BCD data D500
#1000000
D600

11

Programming Concepts Section 1-1

Data Operand | Data form Symbol Range Application example

Text string Description Symbol Examples
Text string data is stored [n ASCII 1 'ABCDE' —Movs(esd)
(one byte except for special charac-
ters) in order from the leftmost to the T D100
rightmost byte and from the right- C D D200
most (smallest) to the leftmost word. E NUL
00 hex (NUL code) is stored in the I D100 a1 42
rightmost byte of the last word if 71) D101 43 44
there is an odd number of charac- 23 24 D102 45 00
ters. 25 00 |

0000 hex (2 NUL codes) is stored in
the leftmost and rightmost vacant
bytes of the last word + 1 if there is
an even number of characters.

D200 41 42
'ABCD' D201 43 44
c D202 45 00

IAI I3I

ICI I:)I

NUL] NUL
1

41 42

43 44

00 00

ASCII characters that can be used in a text string includes alphanumeric characters, Katakana and sym-
bols (except for special characters). The characters are shown in the following table.

ASCII Characters

Bits 0to 3 Bits 4to 7

Binary 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110|0111 | 1000|1001 1010|1011 1100|1101 | 1110|1111

Hex 0 1 2 5 6 7 8 9 A B

0000

Space | @ (¢ | = 0 |

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010 P I B DU

1011

1100

1101

1110

mmlololomlploe|/e/No|alsajwvalo

1111

12

Programming Concepts

Section 1-1

1-1-6 Data Formats

The following table shows the data formats that the CP Series can handle.

Data type Data format Decimal 4-digit
hexadecimal
Unsigned 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |0t 0000 to FFFF
e NN
Binary , 215 214 213 212‘ 211 210 29 28 , 27 26 25 24‘ 23 22 21 20
Decimal 3276816384 819240922048 1024 512 256 ‘128 64 12 16 8 4 2 1
Hex 128 22 ol 207 93 92 o1 9093 92 o1 200 93 22 o1 0
Signed 0to Negative:
. 15 14 183 12 11 10 9 8 7 6 5 4 38 2 1 0
binary -32768 8000 to FFFF
Lt L e |Positive: 0000
Binary . 015 014 913 012, 511510 99 98 .97 96 o5 94, 93 92 ol 90 +32767 to 7FFF
Decimal '3276816384 819240922048 1024 512 256 '128 64 12 16 8 4 2 1
Hex 23 22 21 20 23 22 21 20:23 22 21 20 23 22 21 20
LSign bit: 0: Positive, 1: Negative
BCD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o |0t09999 0000 to 9999
(binary
coded dec- RN
|ma|) Binary . 23 22 21 20 . 23 22 21 20‘ 23 22 21 20 . 23 22 21 20
. o A AN _/
Decimal
Oto9 Oto9 Oto9 Oto9

13

Programming Concepts

Section 1-1

Value = (19" x 1.[Mantissa] x 2Exponent

Sign (bit 63) 1: negative or O: positive

Mantissa The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.L1CIC].....,
in binary.

Exponent The 11 bits from bit 52 to bit 62 contain the exponent

The exponent is expressed in binary as 1023 plus n
in 2".

Note This format conforms to IEEE754 standards for double-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the /0O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up four words.

Data type Data format Decimal 4-digit
hexadecimal
Single-pre- 31 30 29 23 22 21 20 19 18 17 3 2 1 0
cision
foatng- | | | | 0L
point deci- \
mal Sign of Exponent Mantissa
mantissa Binary
A\
Value = (-1)Si9n x 1.[Mantissa] x 2Exponent
Sign (bit 31) 1: negative or O: positive
Mantissa The 23 bits from bit 00 to bit 22 contain the mantissa,
i.e., the portion below the decimal point in 1.CJCI.....,
in binary.
Exponent The 8 bits from bit 23 to bit 30 contain the exponent.
The exponent is expressed in binary as 127 plus n in
2n,
Note This format conforms to IEEE754 standards for single-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the /0O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up two words.
Double- 63 62 61 52 51 50 49 48 47 46 3 2 1 0
precision SS ‘ ‘ ‘ ‘
floating- ‘ ‘ ‘ SS ‘ ‘ ‘ ‘ ‘ ‘ ‘
point deci- S
mal Sign of Exponent) Mantissa
mantissa Binary
/—/%

14

Signed Binary Data

In signed binary data, the leftmost bit indicates the sign of binary 16-bit data.

The value is expressed in 4-digit hexadecimal.

Positive Numbers: A value is positive or 0 if the leftmost bit is 0 (OFF). In 4-
digit hexadecimal, this is expressed as 0000 to 7FFF hex.

Negative Numbers: A value is negative if the leftmost bit is 1 (ON). In 4-digit
hexadecimal, this is expressed as 8000 to FFFF hex. The absolute of the neg-
ative value (decimal) is expressed as a two’s complement.

Programming Concepts

Section 1-1

Example: To treat —19 in decimal as signed binary, 0013 hex (the absolute
value of 19) is subtracted from FFFF hex and then 0001 hex is added to yield
FFED hex.

F F F F
1111 1111 1111 1111
True number 0 0 1 3
) 0000 0000 0001 0011
F F E C
1111 1111 1110 1100
0 0 0 1
+) 0000 0000 0000 0001
Two's complement F F E D
1111 1111 1110 1101

Complements

Generally the complement of base x refers to a number produced when all
digits of a given number are subtracted from x — 1 and then 1 is added to the
rightmost digit. (Example: The ten’s complement of 7556 is 9999 — 7556 + 1 =
2444.) A complement is used to express a subtraction and other functions as
an addition.

Example: With 8954 — 7556 = 1398, 8954 + (the ten’s complement of 7556) =
8954 + 2444 = 11398. If we ignore the leftmost bit, we get a subtraction result
of 1398.

Two’s Complements

A two’s complement is a base-two complement. Here, we subtract all digits
from 1 (2 -1 =1) and add one.

Example: The two’s complement of binary number 1101 is 1111 (F hex) —
1101 (D hex) + 1 (1 hex) = 0011 (3 hex). The following shows this value
expressed in 4-digit hexadecimal.

The two’s complement b hex of a hex is FFFF hex —a hex + 0001 hex = b hex.
To determine the two’s complement b hex of “a hex,” use b hex = 10000 hex —
a hex.

Example: to determine the two’s complement of 3039 hex, use 10000 hex —
3039 hex = CFC7 hex.

Similarly use a hex = 10000 hex — b hex to determine the value a hex from the
two’s complement b hex.

Example: To determine the real value from the two’s complement CFC7 hex
use 10000 hex — CFC7 hex = 3039 hex.

The CP Series has two instructions: NEG(160)(2’S COMPLEMENT) and
NEGL(161) (DOUBLE 2’S COMPLEMENT) that can be used to determine the
two’s complement from the true number or to determine the true number from
the two’s complement.

15

Programming Concepts

Section 1-1

16

Signed BCD Data

Signed BCD data is a special data format that is used to express negative
numbers in BCD. Although this format is found in applications, it is not strictly
defined and depends on the specific application. The CP Series supports the
following instructions to convert the data formats: SIGNED BCD-TO-BINARY:
BINS(470), DOUBLE SIGNED BCD-TO-BINARY: BISL(472), SIGNED
BINARY-TO-BCD: BCDS(471), and DOUBLE SIGNED BINARY-TO-BCD:
BDSL(473). Refer to the CP-series CPU Unit Programming Manual (W451)
for more information.

Decimal Hexadecimal Binary BCD
0 0 0000 0000
1 1 0001 0001
2 2 0010 0010
3 3 0011 0011
4 4 0100 0100
5 5 0101 0101
6 6 0110 0110
7 7 0111 0111
8 8 1000 1000
9 9 1001 1001
10 A 1010 0001 0000
11 B 1011 0001 0001
12 C 1100 0001 0010
13 D 1101 0001 0011
14 E 1110 0001 0100
15 F 1111 0001 0101
16 10 10000 0001 0110
Decimal Unsigned binary (4-digit | Signed binary (4-digit
hexadecimal) hexadecimal)
+65,535 FFFF Cannot be expressed.
+65534 FFFE
+32,769 8001
+32,768 8000
+32,767 7FFF 7FFF
+32,766 7FFE 7FFE
+2 0002 0002
+1 0001 0001
0 0000 0000
-1 Cannot be expressed. FFFF
-2 FFFE
-32,767 8001
-32,768 8000

Programming Concepts Section 1-1

1-1-7 Instruction Variations

The following variations are available for instructions to differentiate executing
conditions and to refresh data when the instruction is executed (immediate

refresh).
Variation Symbol Description

Differentiation ON |@ Instruction that differentiates when the execu-
tion condition turns ON.

OFF | % Instruction that differentiates when the execu-
tion condition turns OFF.

Immediate refreshing ! Refreshes data in the I/0O area specified by
the operands or the Special I/O Unit words
when the instruction is executed.

: Q

1
Instruction (mnemonic)
Differentiation variation
Immediate refresh variation

1-1-8 Execution Conditions
The CP Series offers the following types of basic and special instructions.
* Non-differentiated instructions executed every cycle
« Differentiated instructions executed only once

Non-differentiated Output instructions that required execution conditions are executed once
Instructions every cycle while the execution condition is valid (ON or OFF).

Example
| Non-differentiated 1
output instruction

Input instructions that create logical starts and intermediate instructions read
bit status, make comparisons, test bits, or perform other types of processing
every cycle. If the results are ON, power flow is output (i.e., the execution con-
dition is turned ON).

Example

Non-differentiated input instruction
| 1 | |
|

Input-differentiated Instructions

Upwardly Differentiated * Output Instructions: The instruction is executed only during the cycle in
Instructions (Instruction which the execution condition turned ON (OFF — ON) and are not exe-
Preceded by @) cuted in the following cycles.

Example

l l 1.02
| (@) Upwardly-differ
entiated instruction I @Mov

Executes the MOV instruction once when
CIO 1.02 goes OFF — ON.

17

Programming Concepts Section 1-1

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an ON execution
condition (power flow) when results switch from OFF to ON. The execu-
tion condition will turn OFF the next cycle.

Example
Upwardly differentiated input instruction 1.03

1| t—

ON execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from OFF to ON. The
execution condition will turn ON the next cycle.

Example
| Upwardly differentiated input instruction 1.03
f
| [
OFF execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.
Downwardly Differentiated * Output instructions: The instruction is executed only during the cycle in
Instructions (Instruction which the execution condition turned OFF (ON — OFF) and is not exe-

preceded by %) cuted in the following cycles.

Example
1.02
l (%) Downwardly dif-
ferentiated instruction l { %SET]

Executes the SET instruction once
when CIO 1.02 goes ON to OFF.

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output the execution condi-
tion (power flow) when results switch from ON to OFF. The execution con-
dition will turn OFF the next cycle.

Example
‘ Downwardly differentiated instruction 103

— —

Will turn ON when the CIO 1.03 switches
from ON to OFF and will turn OFF after
one cycle.

Note Unlike the upwardly differentiated instructions, downward differen-
tiation variation (%) can only be added to LD, AND, OR, SET and
RSET instructions. To execute downward differentiation with other
instructions, combine the instructions with a DIFD or a DOWN in-
struction.

18

Programming Concepts Section 1-1

* Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from ON to OFF. The
execution condition will turn ON the next cycle.

Example
Downwardly differentiated input instruction 1.03

OFF execution condition created for one
cycle only when CIO 1.03 goes from ON
to OFF.

1-1-9 1/O Instruction Timing

The following timing chart shows different operating timing for individual
instructions using a program comprised of only LD and OUT instructions.

A i i
A B1 ; 1‘ !
| O & _ | | |
A B2 . Inbut ! ' : : | !
i1} O & | read - f :
' Lo Y Input! ; .
A B3
I 83 | ! . _Input___read | !
141 o) T T read I I
A B4 - Input ' |
i1} O © jread t l
A B5 " Input | !
{ 1t O B _read |
A B6 ‘ ! !
i o |
|
A B7)
1 1 87 ;
| | 0 :
A B8 ;
it o * |
A B9 89 '
1 0) i
A B10 ! '
BI10
- . |
|ith— o f |
A B12 ; .
{if— o B2 , i
CPU pro- : :,g‘ . Z I 1 1R T
et M R . -
Instruction 1/0 refresh
executed.
Differentiated Instructions e A differentiated instruction has an internal flag that tells whether the previ-

ous value is ON or OFF. At the start of operation, the previous value flags
for upwardly differentiated instruction (DIFU and @ instructions) are set to
ON and the previous value flags for downwardly differentiated instructions
(DIFD and % instructions) are set to OFF. This prevents differentiation
outputs from being output unexpectedly at the start of operation.

19

Programming Concepts Section 1-1

¢ An upwardly differentiated instruction (DIFU or @ instruction) will output
ON only when the execution condition is ON and flag for the previous
value is OFF.

* Use in Interlocks (IL - ILC Instructions)
In the following example, the previous value flag for the differentiated
instruction maintains the previous interlocked value and will not output a
differentiated output at point A because the value will not be updated
while the interlock is in effect.

0.00
]
0.01
i DIFU
10.00
ILC
ILis ILis
0.00 executing executing
oot | N |
10.00 |_| ! |_|

®
* Use in Jumps (JMP - JME Instructions): Just as for interlocks, the pre-
vious value flag for a differentiated instruction is not changed when the
instruction is jumped, i.e., the previous value is maintained. Upwardly and
downwardly differentiate instructions will output the execution condition
only when the input status has changed from the status indicated by the
previous value flag.

Note (a) Do not use the Always ON Flag or A200.11 (First Cycle Flag) as
the input bit for an upwardly differentiated instruction. The instruc-
tion will never be executed.

(b) Do not use Always OFF Flag as the input bit for a downwardly dif-
ferentiated instruction. The instruction will never be executed.

1-1-10 Refresh Timing

The following methods are used to refresh external I/O.
* Cyclic refresh
* Immediate refresh (! specified instruction, IORF instruction)

Cyclic Refresh Every program allocated to a ready cyclic task or a task where interrupt condi-
tion has been met will execute starting from the beginning program address
and will run until the END(001) instruction. After all ready cyclic tasks or tasks
where interrupt condition have been met have executed, cyclic refresh will
refresh all I/O points at the same time.

Note Programs can be executed in multiple tasks. I/O will be refreshed after the
final END(001) instruction in the program allocated to the highest number
(among all ready cyclic tasks) and will not be refreshed after the END(001)
instruction in programs allocated to other cyclic tasks.

20

Programming Concepts

Section 1-1

Immediate Refresh

Instructions with Refresh
Variation (!)

Note

Units Refreshed for
IORF(097)

Note

Top
! 15 0
LD 1.01 cot] e
15 0

1 OUT 2.09 coz []
Top 15 0
? cos 7771

15 0

END
Cyclic refresh
(batch processing) | | | |

1/0 refresh D —

16-bit units

All real data

e oL

Execute IORF(097) for all required words or use instructions with the immedi-
ate refresh option prior to the END(001) instruction if I/O refreshing is required
in other tasks.

I/O will be refreshed as shown below when an instruction is executing if an
real 1/0 bit in the built-in I/O of the CPU Unit is specified as an operand.
* When a bit operand is specified for an instruction, 1/0 will be refreshed for
the 16 bits of the word containing the bit.
* When a word operand is specified for an instruction, 1/0 will be refreshed
for the 16 bits that are specified.

* Inputs will be refreshed for input or source operand just before an instruc-
tion is executed.

* Qutputs will be refreshed for outputs or destination (D) operands just after
an instruction is execute.

Add an exclamation mark (!) (immediate refresh option) in front of the instruc-
tion.

Immediate refreshing is not supported for real /0O data allocated to CP-
series/CPM1A Expansion Units or Expansion I/O Units, but IORF(097) is sup-
ported for them.

An I/O REFRESH instruction (IORF(097)) that refreshes real 1/O data in a
specified word range is available as a special instruction for CP-
series/CPM1A Expansion Units and Expansion I/O Units. All or just a speci-
fied range of real I/O bits can be refreshed during a cycle with this instruction.

IORF(097) cannot be used for real 1/0O bits allocated to the built-in I/O of the
CPU Unit. Use instructions with the immediate refresh option for this I/O.

IORF(097) can also be used to refresh words allocated to CJ-series Special
I/0O Units.

21

Programming Concepts

Section 1-1

DLNK(226)

(CP1H CPU Units)

The CPU BUS UNIT I/O REFRESH instruction (DLNK(226)) can be used to
refresh memory allocated to CJ-series CPU Bus Units in the CIO and DM
Areas, as well as data link data and other data specific to the CPU Bus Units.
The unit number of the CPU Bus Unit is specified when DLNK(226) is exe-
cuted to refresh all of the following data at the same time.

¢ Words allocated to the Unit in CIO Area
¢ Words allocated to the Unit in DM Area

* Special refreshing for the Unit (e.g., data links for Controller Link Units or
remote 1/O for DeviceNet Units)

1-1-11 Program Capacity

Note

The maximum program capacities of the CP-series CPU Units for all user pro-
grams (i.e., the total capacity of all tasks) are given in the following table. All
capacities are given as the maximum number of steps. The capacities must
not be exceeded, and writing the program will be disabled if an attempt is
made to exceed the capacity.

Each instruction is from 1 to 7 steps long. Refer to SECTION 4 Instruction
Execution Times and Number of Steps for the specific number of steps in
each instruction. (The length of each instruction will increase by 1 step if a
double-length operand is used.)

Series CPU Unit type Model Max. program capacity
CP Series CP1H | XA CP1H-XA40D[-[] 20K steps
CPU Units X CP1H-X40DL-J
Y CP1H-Y20DT-D
CP Series CP1L |M CP1L-M40D(I-[] 10K steps
CPU Units CP1L-M30D-[]
L CP1L-L20DLI-[] 5K steps
CP1L-L14D0-0]

Memory capacity for CP-series PLCs is measured in steps, whereas memory
capacity for previous OMRON PLCs, such as the C200HX/HG/HE and CV-
series PLCs, was measured in words. Refer to the information at the end of
SECTION 4 Instruction Execution Times and Number of Steps for guidelines
on converting program capacities from previous OMRON PLCs.

1-1-12 Basic Ladder Programming Concepts

General Structure of the

Ladder Diagram

22

Instructions are executed in the order listed in memory (mnemonic order). The
basic programming concepts as well as the execution order must be correct.

A ladder diagram consists of left and right bus bars, connecting lines, input
bits, output bits, and special instructions. A program consists of one or more
program runs. A program rung is a unit that can be partitioned when the bus is
split horizontally. In mnemonic form, a rung is all instructions from a LD/LD
NOT instruction to the output instruction just before the next LD/LD NOT
instructions. A program rung consists of instruction blocks that begin with an
LD/LD NOT instruction indicating a logical start.

Programming Concepts Section 1-1
Input bit Special Qutput bit
Connectin ”nelnstructlon Right bus bar
Left bus bar —, / ° 9 \ / o
] ; \ é_ 4 Rungs Instruction blocks
| § \ /
"
' 11
— — I__|= - v N B i1 —
— |—H— O I —QO-—

— O

Mnemonics

A mnemonic program is a series of ladder diagram instructions given in their
mnemonic form. It has program addresses, and one program address is
equivalent to one instruction.

Example

0.00 0.01 0.02

1.00

— I = 0O

1

0.03 102.00

1.01

Program Address Instruction (Mnemonic) Operand
0 LD 0.00
1 AND 0.01
2 LD 0.02
3 AND NOT 0.03
4 LD NOT 1.00
5 AND 1.01
6 OR LD
7 AND LD
8 ouT 102.00
9 END

Basic Ladder Program Concepts

1,2,3.. 1.

When ladder diagrams are executed by PLCs, the signal flow (power flow)

is always from left to right. Programming that requires power flow from right
to left cannot be used. Thus, flow is different from when circuits are made
up of hard-wired control relays. For example, when the circuit “a” is imple-
mented in a PLC program, power flows as though the diodes in brackets

23

Programming Concepts

Section 1-1

24

were inserted and coil R2 cannot be driven with contact D included. The
actual order of execution is indicated on the right with mnemonics. To
achieve operation without these imaginary diodes, the circuit must be re-
written. Also, circuit “b” power flow cannot be programmed directly and
must be rewritten.

Circuit "a"
A (1) signal flow g® . Order of execution (mnemonic)
— (O I (1)LD A (6) AND B
c@(®) p@® (2)LD C (7) OUT R1
| | (3) OUT TRO (8) LD TRO
T (4)AND D (9)AND E
E©) (10) | (6)OR LD (10) OUT R2
| | @
! \B2)
Circuit " b"
A B
— | i || @
E
c T D
— | @)

In circuit “a,” coil R2 cannot be driven with contact D included.

In circuit “b,” contact E included cannot be written in a ladder diagram. The
program must be rewritten.

There is no limit to the number of I/O bits, work bits, timers, and other input
bits that can be used. Rungs, however, should be kept as clear and simple
as possible even if it means using more input bits to make them easier to
understand and maintain.

There is no limit to the number of input bits that can be connected in series
or in parallel in series or parallel rungs.

Two or more output bits can be connected in parallel.

0.00 0.05

| | | —

0000
#100

102.00

()
N
Output bits can also be used as input bits.
102.00
1l 7\
1 — - - - -
102000 i
iy ()
L /

Programming Concepts

Section 1-1

Restrictions

1,2,3...

1. Aladder program must be closed so that signals (power flow) will flow from
the left bus bar to the right bus bar. A rung error will occur if the program is

not closed (but the program can be executed).

()

Il N\

2. Output bits, timers, counters and other output instructions cannot be con-
nected directly to the left bus bar. If one is connected directly to the left bus
bar, a rung error will occur during the programming check by the CX-Pro-
grammer. (The program can be executed, but the OUT and MOV(021) will

not be executed.)

Input condition must be provided.

—/ o
X O

X MOV

Insert an unused N.C. work bit or the ON Condition Flag (Always ON Flag)

if the input must be kept ON at all times.

Unused work bit

Al

Ly ()
—/

ON (Always ON Flag)
} MOV

3. An input bit must always be inserted before and never after an output in-
struction like an output bit. If it is inserted after an output instruction, then
a location error will occur during the CX-Programmer program check.

102.01
N\

25

Programming Concepts

26

Section 1-1

4. The same output bit cannot be programmed in an output instruction more

5.

6.

than once. Instructions in a ladder program are executed in order from the
top rung in a single cycle, so the result of output instruction in the lower
rungs will be ultimately reflected in the output bit and the results of any pre-
vious instructions controlling the same bit will be overwritten and not out-
put.

(Output bit)
100.00
N\

(Output bit)
100.00
N\

| O

An input bit cannot be used in an OUTPUT instruction (OUT).

(Input bit)

0.00

11 R
it U

An END(001) instruction must be inserted at the end of the program in
each task.

* If a program without an END(001) instruction starts running, a program

error indicating No End Instruction will occur, the ERR/ALM LED on the
front of the CPU Unit will light, and the program will not be executed.

e If a program has more than one END(001) instruction, then the program

will only run until the first END(001) instruction.

* Debugging programs will run much smoother if an END(001) instruction is

inserted at various break points between sequence rungs and the
END(001) instruction in the middle is deleted after the program is
checked.

Task (program) Task (program)
000000
000000
00090 000001
: END
=5 END] Will not be executed.

Task (program)

Task (program)

000000 000000
000001 000001
Z END
' Will not be executed.
END END

Task (program)

Task (program)

000000 000000
000001 000001
END END

Programming Concepts

Section 1-1

1-1-13 Inputting Mnemonics

A logical start is accomplished using an LD/LD NOT instruction. The area
from the logical start until the instruction just before the next LD/LD NOT
instruction is considered a single instruction block.

Create a single rung consisting of two instruction blocks using an AND LD
instruction to AND the blocks or by using an OR LD instruction to OR the
blocks. The following example shows a complex rung that will be used to
explain the procedure for inputting mnemonics (rung summary and order).

1,2,3...

1. First separate the rung into small blocks (a) to (f).

0.00 0.01 002 0.03 0.04 0.05 W0.00
— — | | —3F { I O—
10.00 10.01 0.06
— — {|
5.00
_| I—
@0.00 0.01
o e
©h.04 0.05
®)0.00 10.01 @02 0.03 —A—
o e —A+—F
" 006
(1) —_—{
© 500 @
| I \7)
(3)
(2)

27

Programming Concepts

Section 1-1

2. Program the blocks from top to bottom and then from left to right.

(a)0.00 0.01 (b)1 0.00 10.01]
—A+ A @
LD 0.00 LD 10.00
AND 0.01 AND 10.01 I
OR LD
M)
‘r 2
© 500 s 04 005
= S [[o
OR 5.00 LD 0.04
AND 0.05
| | @)
@000 003 D 506
A3 —
AND 0.02 OR 0.06
AND NOTO0.03
AND LD
? v
WO0.00
—O0
OUT W0.00
Address | Instruction | Operand
(@) 200 LD 0.00
201 AND 0.01 @
(b) 202 LD 10.00
203 AND 10.01 (3)
204 OR LD (5)
(c) 205 OR 5.00
) 206 AND 0.02
207 AND NOT | 0.03 1
© 208 LD 0.04
209 AND 0.05 (4)
) 210 OR 0.06 l
211 ANDLD | - N
212 ouT W0.00
1-1-14 Program Examples
Parallel/Series Rungs
0.00 0.01 0.02 0.03 102.00 Instruction (Operands
e e e e 7 O D 0.00
102.00 AND 0.01 a
— OR 102.00
X AND 0.02
a—r AND NOT | 0.03 b

Program the parallel instruction in the A block and then the B block.

28

Programming Concepts Section 1-1

Series/Parallel Rungs

0.00 0.01 0.02 0.03 102.01 Instruction |Operands
}—u—u’——u—u O D 0.00]
102.01 AND NOT | 0.01 a
L — LD 0.02
0.04 AND 0.03
— OR 102.01 b
OR 0.04
|__ a b —e AND LD
A block B block ouT 102.01

* Separate the rung into A and B blocks, and program each individually.
» Connect A and B blocks with an AND LD.
* Program A block.

Instruction |Operands
51 block LD NOT 0.00]
a
0.00 0.01 0.02 0.03 102.02 /CSD g-g;
L 1L .
‘ HA O AND NOT | 0.03 b,
0.04 102.02 ONOT o
A AND 102.02 | |b2
|-—b2_.| ORLD By +b,
B2 block AND LD a-b
|__ ouT 102.02
a ——sle—— ph —
A block B block

* Program B, block and then program B, block.
» Connect B4 and B, blocks with an OR LD and then A and B blocks with an

AND LD.
Example of Series
Cor]nectlon ina |__ ”) | Instruction [Operands
Series Run A1 block || B1 block D 000 |]
0.00 0.01 0.04 0.05 102.03 AND NOT 0.01 a

——— |—4© LDNOT | 002 |]
0.02 0.03 [0.06 0.07 AND 008 []

HH - ORID [fai+a

LD 0.04)
|._a2_.| ._bz_.l AND 005 |]"
LD 0.06

A2 block B2 block

a —sf— b AND 007 || bz
A block B block OR LD by + b2
AND LD a-b
ouT 102.03
* Program A4 block, program A, block, and then connect A; and A, blocks
with an OR LD.

* Program B4 and B, the same way.
¢ Connect A block and B block with an AND LD.

29

Programming Concepts Section 1-1

* Repeat for as many A to n blocks as are present.

5.00
11 11 11 11 11 [11 11
1 1 1 1 1 1 1T 1
I I HI I I
j— a —_—— b —_— (o] — = = = o= o= o= o= == le—r n —
A block B block C block n block
Complex Rungs
i 0.00 0.01
0.00 0.01 102.04 Instruction | Operand | Y
— } I O LD 0.00
D 0.01 0.02 0.3
0.02 0.03 |—| |—
— LD 0.02 z
e —
AND 0.03 7
004 005 ORLD
—] — AND LD The diagram st(;(())ve is ba;ed on the diagram below.
0.06 0.07 LD 0.04 | .| | T
— AND 0.05
ORLD A simpler program can be written by rewriting
LD 0.06 this as shown below.
AND 207 0.02 0.03 0.00
ORLD - I 1 I I
ouT 102.04 ! H i
0.01
—]
|'_ b _°| Instruction | Operand
Block
0.00 001 002 102.05 ::B - 0.00 a
=—-| H—} O oD g-g; b
a |._ d _.| . :
Block Block LD 0.03 c
0.03 0.04 0.05 AND NOT 0.04 J
T 1 I} LD 0.05 14
. LD 0.06 i
0.06 0.07 AND NOT 0.07 h
Block :
— ——— ORLD 1®
o AND LD d+e
B|OCk OR LD - (d + e) -C
_ _ AND LD (d+e)-c+b
The above rung can be rewritten as follows: ouT 102.05 (d+e)-c+b)-a
0.00 0.01 0.02 102.05
i H {1 O
0.00 0.03 0.04 0.05
1 11 (P4 11
I 11 74l 11
0.00 0.03 0.04 0.06 0.07
i {1 H | —H—

30

Programming Concepts

Section 1-1

Rungs Requiring

Instruction | Operand
0.00 0.03 H0.00 — 0
| | -
! H O OR 0.01
0.01 OR 0.02
1 E]rp“lj{ Tim OR H0.00
0001
0.02 #100] 10 sec AND NOT [0.03
Y— ouT HO0.00
H0.00 1 102.06 TI™ 2(138(1)
—l AND T
Error display ouT 102.06

Caution or Rewriting

If a holding bit is in use, the ON/OFF status would
be held in memory even if the power is turned OFF,
and the error signal would still be in effect when
power is turned back ON.

OR and OL LD Instructions

With an OR or OR NOT instruction, an OR is taken with the results of the lad-
der logic from the LD or LD NOT instruction to the OR or OR NOT instruction,
so the rungs can be rewritten so that the OR LD instruction is not required.

0.00 102.00 0.01 102.00 102.00
—l O | = H—i

0.01 102.00 0.00
———— —i—

Example: An OR LD instruction will be needed if the rungs are programmed
as shown without modification. A few steps can be eliminated by rewriting the
rungs as shown.

Output Instruction Branches

A TR bit will be needed if there is a branch before an AND or AND NOT
instruction. The TR bit will not be needed if the branch comes at a point that is
connected directly to output instructions and the AND or AND NOT instruction
or the output instructions can be continued as is.

Output instruction 1

0.00 001 102.08 0.00 102.09
: —() | == :
102.09 001 10208
B

Output instruction 2

Example: A temporary storage bit TRO output instruction and load (LD)
instruction are needed at a branch point if the rungs are programmed without
modification. A few steps can be eliminated by rewriting the rungs.

31

Programming Concepts

Section 1-1

32

Mnemonic Execution Order

PLCs execute ladder programs in the order the mnemonics are entered so
instructions may not operate as expected, depending on the way rungs are
written. Always consider mnemonic execution order when writing ladder dia-
grams.

0.00 110.00 0.00 110.00 102.10
| O | = —H— O
110.00 102.10 0.00 110.00

—|

Example: CIO 102.10 in the above diagram cannot be output. By rewriting the
rung, as shown above, CIO 102.10 can be turned ON for one cycle.

Rungs Requiring Rewriting
PLCs execute instructions in the order the mnemonics are entered so the sig-

nal flow (power flow) is from left to right in the ladder diagram. Power flows
from right to left cannot be programmed.

0.00 0.03 102.11 0.01 0.02 0.03 102.11

—i| | > A
O.OI1 0.02 II_O 0.(I)0 .) O
—i| # —

0.04 102.12 0.01 0.04 102.12

1 O — —

Example: The program can be written as shown in the diagram at the left
where TRO receives the branch. The same value is obtained, however, by the
rungs at the right, which are easier to understand. It is recommended, there-
fore, that the rungs at the left be rewritten to the rungs at the right.

Rewrite the rungs on the left below. They cannot be executed.
The arrows show signal flow (power flow) when the rungs consist of control
. — |

relays.
A . B
mmiem e an O I B e N
C : E: D
_““L' _____ —i—F)- I (R2)
I

A

]

Precautions Section 1-2

1-2 Precautions
1-2-1 Condition Flags

Using Condition Conditions flags are shared by all instructions, and will change during a cycle
Flags depending on results of executing individual instructions. Therefore, be sure

to use Condition Flags on a branched output with the same execution condi-
tion immediately after an instruction to reflect the results of instruction execu-
tion. Never connect a Condition Flag directly to the bus bar because this will
cause it to reflect execution results for other instructions.

Example: Using Instruction A Execution Results

Correct Use O
a Mnemonic

||
! Instruction A

Instruction |Operand

E LD a
Reflects instruction A [|nstruction A

Condition Flag ~ execution results. AND —
Example: =

Instruction B

jl } Instruction B

The same execution condition (a) is used for instructions A and B to execute
instruction B based on the execution results of instruction A. In this case,
instruction B will be executed according to the Condition Flag only if instruc-
tion A is executed.

Incorrect Use x

Preceding rung

]| % Instruction A

Reflects the execution results of
the preceding rung if instruction
Condition Flag A is not executed.

Example: =
} } Instruction B

If the Condition Flag is connected directly to the left bus bar, instruction B will
be executed based on the execution results of a previous rung if instruction A
is not executed.

Note Condition Flags are used by all instruction within a single program (task) but
they are cleared when the task switches. Therefore execution results in the
preceding task will not be reflected later tasks. Since conditions flags are
shared by all instructions, make absolutely sure that they do not interfere with
each other within a single ladder-diagram program. The following is an exam-

ple.

33

Precautions

Section 1-2

Using Execution Results in N.C. and N.C. Inputs

The Condition Flags will pick up instruction B execution results as shown in

the example below even though the N.C. and N.O. input bits are executed
from the same output branch.

X

Incorrect
Use

Instruction A

|
i Reflects instruction A execution
Condition Flag "®SUlts:
Example: =

| mtuctons |
)

i Reflects instruction B execution
Condition Flag results.
Example: =

g L]

Make sure each of the results is picked up once by an OUTPUT instruction to
ensure that execution results for instruction B will be not be picked up.

O

Correct
Use

34

I

Reflects instruction A

Instruction A

execution results. |
Condition Flag c
Exampfef =

T

Condition Flag

Reflects instruction A
execution results.

Example: = D

[

I
T

O

Cc
|
I

Instruction B

4

Precautions

Section 1-2

Example: The following example will move #200 to D200 if D100 contains
#10 and move #300 to D300 if D100 does not contain #10.

X

Incorrect
Use

|

CMP

#10

D100

l Reflects CMP execution results.

| L
I

MoV

#200

D200

#300

D300

' Reflects MOV execution results.
MOV

The Equals Flag will turn ON if D100 in the rung above contains #10. #200 will
be moved to D200 for instruction (1), but then the Equals Flag will be turned
OFF because the #200 source data is not 0000 hex. The MOV instruction at
(2) will then be executed and #300 will be moved to D300. A rung will there-
fore have to be inserted as shown below to prevent execution results for the
first MOVE instruction from being picked up.

O

Correct
Use

|

1

CMP

#10

D100

l Reflects CMP execution results.

A

|
i

O

O

MOV

#200

D200

MOV

#300

D300

35

Precautions

Section 1-2

36

Using Execution Results from Differentiated Instructions

With differentiated instructions, execution results for instructions are reflected
in Condition Flags only when execution condition is met, and results for a pre-
vious rung (rather than execution results for the differentiated instruction) will
be reflected in Condition Flags in the next cycle. You must therefore be aware
of what Condition Flags will do in the next cycle if execution results for differ-
entiated instructions to be used.

In the following for example, instructions A and B will execute only if execution
condition C is met, but the following problem will occur when instruction B
picks up execution results from instruction A. If execution condition C remains
ON in the next cycle after instruction A was executed, then instruction B will
unexpectedly execute (by the execution condition) when the Condition Flag
goes from OFF to ON because of results reflected from a previous rung.

X Previous rung

Incorrect C
Use

{ } ? Instruction A

Reflects execution results for instruction
r—| A when execution condition is met.
o Reflects execution results for a previous
Condition Flag rung in the next cycle.
Example: =

I I ? Instruction B

In this case then, instructions A and B are not differentiated instructions, the
DIFU (of DIFD) instruction is used instead as shown below and instructions A
and B are both upwardly (or downwardly) differentiated and executed for one
cycle only.

O Previous rung

Coret |
D
D
11 I Instruction A

; Reflects instruction A execution results.

Condition Flag
Example: =

{ } Instruction B

The CP1H CPU Units support instructions to save and load the Condition
Flag status (CCS(282) and CCL(283)). These can be used to access the sta-
tus of the Condition Flags at other locations in a task or in a different task.

Precautions

Section 1-2

Main Conditions Turning ON Condition Flags

Error Flag

Note
Equals Flag
Carry Flag

Note

Less Than and Greater
Than Flags

Negative Flag

Specifying Operands for
Multiple Words

The ER Flag will turn ON under special conditions, such as when operand
data for an instruction is incorrect. The instruction will not be executed when
the ER Flag turns ON.

When the ER Flag is ON, the status of other Condition Flags, such as the <,
>, OF, and UF Flags, will not change and status of the = and N Flags will vary
from instruction to instruction.

Refer to the descriptions of individual instructions in the CP-series CP1H CPU
Unit Programming Manual (W451) for the conditions that will cause the ER
Flag to turn ON. Caution is required because some instructions will turn OFF
the ER Flag regardless of conditions.

The PLC Setup Settings for when an instruction error occurs determines
whether operation will stop when the ER Flag turns ON. In the default setting,
operation will continue when the ER Flag turns ON. If Stop Operation is spec-
ified when the ER Flag turns ON and operation stops (treated as a program
error), the program address at the point where operation stopped will be
stored at in A298 to A299. At the same time, A295.08 will turn ON.

The Equals Flag is a temporary flag for all instructions except when compari-
son results are equal (=). It is set automatically by the system, and it will
change. The Equals Flag can be turned OFF (ON) by an instruction after a
previous instruction has turned it ON (OFF). The Equals Flag will turn ON, for
example, when MOV or another move instruction moves 0000 hex as source
data and will be OFF at all other times. Even if an instruction turns the Equals
Flag ON, the move instruction will execute immediately and the Equals Flag
will turn ON or OFF depending on whether the source data for the move
instruction is 0000 hex or not.

The CY Flag is used in shift instructions, addition and subtraction instructions
with carry input, addition and subtraction instruction borrows and carries, as
well as with Special 1/0 Unit instructions, PID instructions, and FPD instruc-
tions. Note the following precautions.

(1) The CY Flag can remain ON (OFF) because of execution results for a cer-
tain instruction and then be used in other instruction (an addition and sub-
traction instruction with carry or a shift instruction). Be sure to clear the
Carry Flag when necessary.

(2) The CY Flag can be turned ON (OFF) by the execution results for a cer-
tain instruction and be turned OFF (ON) by another instruction. Be sure
the proper results are reflected in the Carry Flag when using it.

The < and > Flags are used in comparison instruction, as well as in the LMT,
BAND, ZONE, PID and other instructions.

The < or > Flag can be turned OFF (ON) by another instruction even if it is
turned ON (OFF) by execution results for a certain instruction.

The N Flag is turned OFF when the leftmost bit of the instruction execution
results word is “1” for certain instructions and it is turned OFF unconditionally
for other instruction.

With the CP-series PLCs, an instruction will be executed as written even if an
operand requiring multiple words is specified so that all of the words for the
operand are not in the same area. In this case, words will be taken in order of
the PLC memory addresses. The Error Flag will not turn ON.

37

Precautions

Section 1-2

As an example, consider the results of executing a block transfer with
XFER(070) if 20 words are specified for transfer beginning with W500. Here,
the Work Area, which ends at W511, will be exceeded, but the instruction will
be executed without turning ON the Error Flag. In the PLC memory
addresses, the present values for timers are held in memory after the Work
Area, and thus for the following instruction, W500 to W511 will be transferred
to DO to D11 and the present values for TO to T7 will be transferred to D12 to

D19.
Note For specific PLC memory addresses in CP1H CPU Units, refer to Appendix E:
Memory Map in the CP Series CP1H CPU Units Operation Manual (W450).
For specific PLC memory addresses in CP1L CPU Units, refer to Appendix E:
Memory Map in the CP Series CP1L CPU Units Operation Manual (W462).
| | XFER W500) (Do
H o to ;I'ranz- to
erred.
&20| Number of words W511 | |.< D11
WS500] First source word TO D12
. N to to to
DO| First destination word T7) D19

to

to

1-2-2 Special Program Sections

CP-series programs have special program sections that will control instruction
conditions. The following special program sections are available.

Program section

Instructions

Instruction condition

Status

Subroutine SBS, SBN and RET instruc- | Subroutine program is | The subroutine program section between
tions executed. SBN and RET instructions is executed.
IL - ILC section IL and ILC instructions Section is interlocked | The output bits are turned OFF and tim-

Step Ladder section

STEP S instructions and
STEP instructions

ers are reset. Other instructions will not
be executed and previous status will be

maintained.
FOR-NEXT loop FOR instructions and NEXT | Break in progress. Looping
instructions
JMPO - JMEO section |JMPO instructions and JMEO Jump

instructions

Block program section

BPRG instructions and
BEND instructions

cuting.

Block program is exe-

The block program listed in mnemonics
between the BPRG and BEND instruc-
tions is executed.

Instruction

Combinations

The following table shows which of the special instructions can be used inside
other program sections.

Subroutine IL-ILC Step ladder FOR - NEXT | JMPO - JMEO |Blockprogram
section section loop section section

Subroutine Not possible. Not possible. Not possible. Not possible. Not possible. Not possible.
IL-ILC OK Not possible. Not possible. OK OK Not possible.
Step ladder Not possible. OK Not possible. Not possible. OK Not possible.
section
FOR - NEXT OK OK Not possible. OK OK Not possible.
loop
JMPO - JMEO |OK OK Not possible. Not possible. Not possible. Not possible.
Block pro- OK OK OK Not possible. OK Not possible.
gram section

38

Precautions

Section 1-2

Subroutines

Instructions Not

Available in
Subroutines

Note

Note

Instructions that specify program areas cannot be used for programs in other
tasks. Refer to 2-2-2 Task Instruction Limitations for details.

Place all the subroutines together just before the END(001) instruction in all
programs but after programming other than subroutines. (Therefore, a subrou-
tine cannot be placed in a step ladder, block program, FOR - NEXT, or JMPO -
JMEO section.) If a program other than a subroutine program is placed after a
subroutine program (SBN to RET), that program will not be executed.

Program

Subroutine

Program

Subroutine

The following instructions cannot be placed in a subroutine.

Function Mnemonic Instruction
Process Step Control STEP(008) Define step ladder section
SNXT(009) Step through the step ladder

Block Program Sections

A subroutine can include a block program section. If, however, the block pro-
gram is in WAIT status when execution returns from the subroutine to the
main program, the block program section will remain in WAIT status the next
time it is called.

Instructions Not Available in Step Ladder Program Sections

Function Mnemonic Instruction
Sequence Control | FOR(512), NEXT(513), and FOR, NEXT, and BREAK
BREAK(514) LOOP
END(001) END
IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR
JMP(004) and JME(005) JUMP and JUMP END

CJP(510) and CJPN(511) CONDITIONAL JUMP and
CONDITIONAL JUMP NOT

JMPO(515) and JMEO(516) | MULTIPLE JUMP and MULTI-
PLE JUMP END

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY and
SUBROUTINE RETURN

39

Precautions Section 1-2

Function Mnemonic Instruction

Block Programs IF(802) (NOT), ELSE(803), Branching instructions
and IEND(804)

BPRG(096) and BEND(801) | BLOCK PROGRAM

BEGIN/END
EXIT(806) (NOT) CONDITIONAL BLOCK EXIT
(NOT)
LOOP(809) and LEND(810) Loop control
(NOT)
WAIT(805) (NOT) ONE CYCLE WAIT (NOT)
TIMW(813) and TIMWX(816) | TIMER WAIT
TMHW(815) and HIGH-SPEED TIMER WAIT
TMHWX(817)

CNTW(814) and CNTWX(818) | COUNTER WAIT

BPPS(811) and BPRS(812) BLOCK PROGRAM PAUSE
and RESTART

Note (1) A step ladder program section can be used in an interlock section (be-
tween IL and ILC). The step ladder section will be completely reset when
the interlock is ON.

(2) A step ladder program section can be used between MULTIPLE JUMP
(JMPO) and MULTIPLE JUMP END (JMEO).

Instructions Not The following instructions cannot be placed in block program sections.
Supported in _BIOCk Classification by Mnemonic Instruction
Program Sections Function
Sequence Control FOR(512), NEXT(513), FOR, NEXT, and BREAK
and BREAK(514) LOOP
END(001) END
IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR
JMP0(515) and JMEO(516) | MULTIPLE JUMP and
MULTIPLE JUMP END
Sequence Input UP(521) CONDITION ON
DOWN(522) CONDITION OFF
Sequence Output DIFU DIFFERENTIATE UP
DIFD DIFFERENTIATE DOWN
KEEP KEEP
ouT OUTPUT
OUT NOT OUTPUT NOT
Timer/Counter TIM and TIMX(550) TIMER
TIMH(015) and HIGH-SPEED TIMER
TIMHX(551)
TMHH(540) and ONE-MS TIMER
TMHHX(552)
TTIM(087) and ACCUMULATIVE TIMER
TTIMX(555)
TIML(542) and LONG TIMER
TIMLX(553)
MTIM(543) and MULTI-OUTPUT TIMER
MTIMX(554)
CNT and CNTX(546) COUNTER
CNTR(012) and REVERSIBLE COUNTER
CNTRX(548)

40

Checkin,_g Programs Section 1-3

Classification by Mnemonic Instruction
Function
Subroutines SBN(092) and RET(093) | SUBROUTINE ENTRY
and SUBROUTINE
RETURN
Data Shift SFT SHIFT
Ladder Step Control STEP(008) and STEP DEFINE and STEP
SNXT(009) START
Data Control PID PID CONTROL
Block Program BPRG(096) BLOCK PROGRAM
BEGIN
Damage Diagnosis FPD(269) FAILURE POINT DETEC-
TION
Instructions with a differen- | @ XXX Instruction with upward dif-
tiation option ferentiation
YoXXX Instruction with downward
differentiation
Note (1) Block programs can be used in a step ladder program section.

(2) A block program can be used in an interlock section (between IL and ILC).
The block program section will not be executed when the interlock is ON.

(3) A block program section can be used between MULTIPLE JUMP (JMPOQ)
and MULTIPLE JUMP END (JMEO).

(4) A JUMP instruction (JMP) and CONDITIONAL JUMP instruction
(CJP/CJPN) can be used in a block program section. JUMP (JMP) and
JUMP END (JME) instructions, as well as CONDITIONAL JUMP
(CJP/CJPN) and JUMP END (JME) instructions cannot be used in the
block program section unless they are used in pairs. The program will not
execute properly unless these instructions are paired.

1-3 Checking Programs

CP-series programs can be checked at the following stages.
* Input check during CX-Programmer input and other operations
* Program check by CX-Programmer
¢ Instruction check during execution
* Fatal error check (program errors) during execution

1-3-1 CX-Programmer

The program will be automatically checked by the CX-Programmer at the fol-

lowing times.
Timing Checked contents
When inputting ladder | Instruction inputs, operand inputs, programming patterns
diagrams
When loading files All operands for all instructions and all programming pat-

terns

When downloading files | Models supported by the CP Series and all operands for all
instructions

During online editing Capacity, etc.

The results of checking are output to the text tab of the Output Window. Also,
the left bus bar of illegal program sections will be displayed in red in ladder
view.

41

Checkin,_g Programs Section 1-3

1-3-2 Program Checks with the CX-Programmer

The errors that are detected by the program check provided by the CX-Pro-
grammer are listed in the following table.

The CX-Programmer does not check range errors for indirectly addressed
operands in instructions. Indirect addressing errors will be detected in the pro-
gram execution check and the ER Flag will turn ON, as described in the next
section. Refer to individual instruction descriptions for details.

When the program is checked on the CX-Programmer, the operator can spec-
ify program check levels A, B, and C (in order of the seriousness of the error),
as well as a custom check level.

Area Check
llegal data: Ladder | Instruction locations
diagramming /O lines

Connections
Instruction and operation completeness
Instruction support | Instructions and operands supported by PLC

by PLC Instruction variations (NOT, |, @, and %)
Object code integrity
Operand ranges Operand area ranges

Operand data types

Access check for read-only words

Operand range checks, including the following.
e Constants (#, &, +, -)

* Control codes

* Area boundary checks for multi-word operands
* Size relationship checks for multi-word operands
* Operand range overlaps

* Multi-word allocations

* Double-length operands

* Area boundary checks for offsets

Program capacity Number of steps

for PLC Overall capacity
Number of tasks

Syntax Call check for paired instructions
e|L-ILC

* JMP-JME, CJP/CJPN-JME

* SBS-SBN-RET, MCRO-SBN-RET

* STEP-SNXT

* BPRG-BEND

* IF-IEND

*LOOP-LEND

Restricted programming locations for BPRG-BEND
Restricted programming locations for SBN-RET
Restricted programming locations for STEP-SNXT
Restricted programming locations for FOR-NEXT
Restricted programming locations for interrupt tasks
lllegal nesting

END(001) instruction

Number consistency

Ladder diagram Stack overflows
structure

42

Checking Programs

Section 1-3

Note

Multi-word Operands

Area Check
Output duplication | Duplicate output check
(See note.) * By bit
* By word

* Timer/counter instructions

* Long words (2-word and 4-word)

* Multiple allocated words

e Start/end ranges

* FAL numbers

¢ Instructions with multiple output operands

Tasks Check for tasks set for starting at beginning of operation

Task program allocation

Output duplication is not checked between tasks, only within individual tasks.

Memory area boundaries are checked for multi-word operands for the pro-
gram check as shown in the following table.

The following functionality is provided by the CX-Programmer for
multi-word operands that exceed a memory area boundary.

* The program cannot be transferred to the CPU Unit.

* The program also cannot be read from the CPU Unit.

* Compiling errors are generated for the program check.

¢ Warnings will appear on-screen during offline programming.
* Warnings will appear on-screen during online editing in PRO-

Check items

GRAM or MONITOR mode.

1-3-3 Program Execution Check

Operand and instruction location checks are performed on instructions during
input and during program checks from the CX-Programmer. These are not,
however, final checks.

The following checks are performed during instruction execution.

Type of error

Flag that turns ON for error

Stop/Continue operation

1. Instruction Processing Error

ER Flag

Note The Instruction Processing
Error Flag (A295.08) will
also turn ON if Stop Opera-
tion is specified when an
error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.

A program error will be generated and operation
will stop only if Stop Operation is specified.

2. Access Error

AER Flag

Note The Access Error Flag
(A295.10) will turn ON if
Stop Operation is specified
when an error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.

A program error will be generated and operation
will stop only if Stop Operation is specified.

3. lllegal Instruction Error

lllegal Instruction Error Flag
(A295.14)

Fatal (program error)

4. UM (User Memory) Overflow
Error

UM Overflow Error Flag (A295.15)

Fatal (program error)

Instruction
Processing Errors

An instruction processing error will occur if incorrect data was provided when

executing an instruction or an attempt was made to execute an instruction out-
side of a task. Here, data required at the beginning of instruction processing
was checked and as a result, the instruction was not executed, the ER Flag
(Error Flag) will be turned ON and the EQ and N Flags may be retained or
turned OFF depending upon the instruction.

43

Checking Programs

Section 1-3

lllegal Access Errors

1,2,3...

Note

Other Errors

lllegal Instruction Errors

UM (User Memory)
Overflow Errors

44

The ER Flag (error Flag) will turn OFF if the instruction (excluding input
instructions) ends normally. Conditions that turn ON the ER Flag will vary with
individual instructions. See descriptions of individual instructions in for details.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the Instruction Processing Error Flag (A295.08)
will turn ON if an instruction processing error occurs and the ER Flag turns
ON.

lllegal access errors indicate that the wrong area was accessed in one of the
following ways when the address specifying the instruction operand was
accessed.

A read or write was executed for a parameter area.

A write was executed in a memory area that is not mounted (See note.).
A write was executed in a read-only area.

The value specified in an indirect DM address in BCD mode was not BCD
(e.g., *D1 contains #A000).

Note An IR register containing the internal memory address of a bit is
used as a word address or an IR containing the internal memory
address of a word is used as a bit address.

Instruction processing will continue and the Error Flag (ER Flag) will not turn
ON if an access error occurs, but the Access Error Flag (AER Flag) will turn
ON.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the “lllegal Access Error Flag” (A295.10) will turn
ON if an illegal access error occurs and the AER Flag turns ON.

P obd =

The Access Error Flag (AER Flag) will not be cleared after a task is executed.
If Instruction Errors are set to Continue Operation, this Flag can be monitored
until just before the END(001) instruction to see if an illegal access error has
occurred in the task program. (The status of the final AER Flag after the entire
user program has been executed will be monitored if the AER Flag is moni-
tored on the CX-Programmer.)

lllegal instruction errors indicate that an attempt was made to execute instruc-
tion data other than that defined in the system. This error will normally not
occur as long as the program is created on a the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the lllegal Instruction Flag (A295.14) will
turn ON.

UM overflow errors indicate that an attempt was made to execute instruction
data stored beyond the last address in the user memory (UM) defined as pro-
gram storage area. This error will normally not occur as long as the program is
created on the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the UM Overflow Flag (A295.15) will turn
ON.

Checkin,_g Programs Section 1-3

1-3-4 Checking Fatal Errors

The following errors are fatal program errors and the CPU Unit will stop run-
ning if one of these occurs. When operation is stopped by a program error, the
task number where operation stopped will be stored in A294 and the program
address will be stored in A298/A299. The cause of the program error can be
determined from this information.

Address Description Stored Data

A294 The type of task and the task number at the Cyclic task: 0000 to 001F hex (cyclic tasks 0 to 31)
point where operation stopped will be stored Interrupt task: 8000 to 80FF hex (interrupt tasks 0 to 255)
here if operation stops due to a program error.

Note FFFF hex will be stored if there are no
active cyclic tasks in a cycle, i.e., if there
are no cyclic tasks to be executed.

A298/A299 | The program address at the point where opera- | A298: Rightmost portion of program address
tion stopped will be stored here in binary if A299: Leftmost portion of program address
operation stops due to a program error.

Note If the END(001) instruction is missing
(A295.11 will be ON), the address where
END(001) was expected will be stored.

Note If there is a task execution error (A295.12
will be ON), FFFFFFFF hex will be stored
in A298/A299.

Note If the Error Flag or Access Error Flag turns ON, it will be treated as a program
error and it can be used to stop the CPU from running. Specify operation for
program errors in the PLC Setup.

Program error Description Related flags
No END Instruction An END instruction is not present in the The No END Flag (A295.11) turns ON.
program.
Error During Task Execution No task is ready in the cycle. The Task Error Flag (295.12) turns ON.

No program is allocated to a task.

The corresponding interrupt task number is
not present even though the execution
condition for the interrupt task was met.

Instruction Processing Error (ER The wrong data values were provided in The ER Flag turns ON and the Instruc-
Flag ON) and Stop Operation set | the operand when an attempt was made to |tion Processing Error Flag (A295.08)
for Instruction Errors in PLC Setup | execute an instruction. turns ON if Stop Operation set for
Instruction Errors in PLC Setup.

lllegal Access Error (AER Flag ON) | A read or write was executed for a parame- | AER Flag turns ON and the lllegal

and Stop Operation set for Instruc- |ter area. Access Error Flag (A295.10) turns ON
tion Errors in PLC Setup A write was executed in a memory area if Stop Operation set for Instruction
that is not mounted. Errors in PLC Setup

A write was executed in a read-only area.

The value specified in an indirect DM
address in BCD mode was not BCD.

Indirect DM BCD Error and Stop The value specified in an indirect DM AER Flag turns ON and the DM Indi-

Operation set for Instruction Errors | address in BCD mode is not BCD. rect BCD Error Flag (A295.09) turns

in PLC Setup ON if Stop Operation set for Instruction
Errors in PLC Setup

Differentiation Address Overflow During online editing, more than 131,072 | The Differentiation Overflow Error Flag

Error differentiated instructions have been (A295.13) turns ON.

inserted or deleted.

45

Introducing Function Blocks Section 1-4

Program error Description Related flags

UM (User Memory) Overflow Error | An attempt was made to execute instruc- | The UM (User Memory) Overflow Flag
tion data stored beyond the last address in | (A295.5) turns ON.

user memory (UM) defined as program
storage area.

lllegal Instruction Error An attempt was made to execute an The lllegal Instruction Flag (A295.14)
instruction that cannot be executed. turns ON.

1-4 Introducing Function Blocks

Function blocks can be used with CP-series CPU Units. Refer to the CX-Pro-
grammer Ver. 7.0 Operation Manual Function Blocks (W447) for details on
actually using function blocks.

1-4-1 Overview and Features

Function blocks conforming to the IEC 61131-3 standard can be used with
CX-Programmer Ver. 5.0 and higher. These function blocks are supported by
CS/CJ-series CPU Units with unit version 3.0 or later and by CP-series CPU
Units. The following features are supported.

* User-defined processes can be converted to block format by using func-
tion blocks.

* Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

* When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

* When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

* Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.
A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

* A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

e A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

* Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

* One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

46

Introducing Function Blocks Section 1-4

Note The IEC 61131 standard was defined by the International Electro-
technical Commission (IEC) as an international programmable log-
ic controller (PLC) standard. The standard is divided into 7 parts.
Specifications related to PLC programming are defined in Part 3
Textual Languages (IEC 61131-3).

* A function block (ladder programming language or structured text (ST)
language) can be called from another function block (ladder programming
language or structured text (ST) language). Function blocks can be
nested up to 8 levels and ladder/ST language function blocks can be com-
bined freely.

1-4-2 Function Block Specifications

For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Ver. 7.0 Operation Manual Function Blocks (W447).

Item Specifications
Model number WS02-CXPC1-E-V6
Setup disk CD-ROM
Compatible CPU Units CP-series CPU Units with unit version 1.0 or later

CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or
later are compatible.

Device Type CPU Type

*CS1G-H CS1G-CPU42H/43H/44H/45H
*CS1H-H CS1H-CPU63H/64H/65H/66H/67H
*CJ1G-H CJ1G-CPU42H/43H/44H/45H
*CJ1H-H CJ1H-CPU6B5H/66H/67H

*CJ1M CJ1M-CPU11/12/13/21/22/23

CS/CJ/CP Series Function Restrictions

¢ Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and
CJPN), Step Ladder Instructions (STEP and SNXT), Immediate Refresh
Instructions (!), I/O REFRESH (IORF), ONE-MS TIMER (TMHH).

Compatible Computer IBM PC/AT or compatible
computers I cpy 133 MHz Pentium or faster with Windows 98, 98SE, or NT 4.0 (with service
pack 6 or higher)
oS Microsoft Windows 95, 98, 98SE, Me, 2000, XP, or NT 4.0 (with service pack
6 or higher)
Memory 64 Mbytes min. with Windows 98, 98SE, or NT 4.0 (with service pack 6 or
higher)
Refer to the CX-Programmer Ver. 7.0 Operation Manual (W437) for details.
Hard disk space 100 Mbytes min. available disk space
Monitor SVGA (800 x 600 pixels) min.
Note Use “small font” for the font size.
CD-ROM drive One CD-ROM drive min.
COM port One RS-232C port min.

Note The structured text (ST language) conforms to the IEC 61131-3 standard, but
CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, and comments.

47

Introducing Function Blocks

Section 1-4

1-4-3 Files Created with CX-Programmer

Project Files (*.cxp)

Function Block Library
Files (*.cxf)

Note

Project Text Files
Containing Function
Blocks (*.cxt)

48

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Project file (.cxp)

— PLCt1 — Global symbol table

— 1/O table

— PLC Setup

— PLC memory table

— Program (with rung comments)

—Local symbol table

— Section 1 (with instances) -

— Section 2 (with instances) -*----q
\

—— END section (with instances) <------':
|
— Function block definitions i

3

— FunctionBlock1 L : Each function block can be

____________________ ! stored in a separate
> definition file (.cxf).

— FunctionBlock2 J
'

Instances created
in program
PLC2 sections.

A function block definition created in a project with CX-Programmer can be
saved as a file (1 definition = 1 file), enabling definitions to be loaded into
other programs and reused.

When function blocks are nested, all of the nested (destination) function block
definitions are included in this function block library file (.cxf).

Data equivalent to that in project files created with CX-Programmer (*.cxp)
can be saved as CXT text files (*.cxt).

This section describes the operation of tasks and how to use tasks in programming.

2-1 Programming with Tasks. i,
2-1-1 OVeIVIBW. . o vttt ettt et e e et e e e e e
2-1-2 Tasksand Programsouiuiiinineniunnnnnn..
2-1-3 Basic CPU Unit Operationouiitneneennenan...
2-1-4 Typesof Tasksovuininn i
2-1-5 Task Execution Conditions and Settings
2-1-6 Cyclic Task Status. oot e
2-1-7 Status TranSitionso vt ittt
2-2 USINg TasKS . . oottt
2-2-1 TASKONand TASKOFF.
2-2-2 Task Instruction Limitations.
2-2-3 FlagsRelatedtoTasks
2-2-4 Examplesof Taskst
2-2-5 Designing Tasks
2-2-6 Global Subroutine. i
2-3 Interrupt Tasks.ot
2-3-1 TypesofInterrupt Tasks,
2-3-2 Interrupt Task Flagsand Words
2-3-3 Application Precautions i
2-4 CX-Programmer Operations for Tasks

SECTION 2

50
50
52
53
54
56
56
57
58
58
61
62
65
66
68
68
68
73
74
75

Tasks

49

Programming with Tasks

Section 2-1

2-1 Programming with Tasks

2-1-1 Overview

1,2,3...

50

CP-series CPU Unit control operations can be divided by functions, controlled
devices, processes, developers, or any other criteria and each operation can
be programmed in a separate unit called a “task.” Using tasks provides the fol-
lowing advantages:

Programs can be developed simultaneously by several people.
Individually designed program parts can be assembled with very little effort
into a single user program.
Programs can be standardized in modules.
More specifically, the following the CX-Programmer functions will be com-
bined to develop programs that are standalone standard modules rather
than programs designed for specific systems (machines, devices). This
means that programs developed separately by several people can be
readily combine.

* Programming using symbols

* Global and local designation of symbols

* Automatic allocation of local symbols to addresses
Improved overall response.

Overall response is improved because the system is divided into an overall
control program as well as individual control programs, and only specific
programs will be executed as needed.

Easy revision and debugging.

* Debugging is much more efficient because tasks can be developed
separately by several people, and then revised and debugged by indi-
vidual task.

* Maintenance is simple because only the task that needs revising will
be changed in order to make specification or other changes.

* Debugging is more efficient because it is easy to determine whether
an address is specific or global and addresses between programs only
need to be checked once during debugging because symbols are des-
ignated globally or locally and local symbols are allocated automatical-
ly to addresses through the CX-Programmer.

Easy to switch programs.

A task control instruction in the program can be used to execute product-
specific tasks (programs) when changing operation is necessary.

Easily understood user programs.

Programs are structured in blocks that make the programs much simpler

to understand for sections that would conventionally be handled with in-
structions like jump.

Programming with Tasks

Section 2-1

Earlier system

One continuous l

lsubprogram

L
o

|

| I/0 refreshing I

]

Note

Allocation

CP1H

Task 1

Tasks can be

put into non-
/ executing
="+ (standby) Program
i status. development and
: — debugging is

possible by more
than one person.

l I/0 refreshing

]

Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

* All cards are read in a preset sequence starting from the lowest number.

* All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

¢ A card that is activated will remain activated and will be read in subse-
quent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

51

Programming with Tasks

Section 2-1

2-1-2 Tasks and Programs

Up to 288 programs (tasks) can be controlled. Individual programs are allo-
cated 1:1 to tasks. Tasks are broadly grouped into the following types:

52

* Cyclic tasks

* Interrupt tasks

Each program allocated to a task is executed independently and must end
with an END(001) instruction. 1/O refreshing will be executed only after all task
programs in a cycle have been executed.

‘_

@ Interrupt condition

< goes into effec]

| I/O refreshing

—

Program A

Allocation

Interrupt N oo
task 100 | :
Allocation

i

Program B

Program C

@ Allocation T

il

Program D

il

Programming with Tasks Section 2-1

2-1-3 Basic CPU Unit Operation

The CPU Unit will execute cyclic tasks starting at the task with the lowest
number. It will also interrupt cyclic task execution to execute an interrupt task
if an interrupt occurs.

l A
Cyclic task 0

Executed in order starting l Interrupt task 5 l

at the lowest number. -
Cyclic task 1 l O
T et
O—N3
[END_|

Cyclic task n l

l

I/0 refresh

|

Peripheral processing

|

Note All Condition Flags (ER, CY, Equals, AER, etc.) and instruction conditions
(interlock ON, etc.) will be cleared at the beginning of a task. Therefore Condi-
tion Flags cannot be read nor can INTERLOCK/INTERLOCK CLEAR (IL/ILC)
instructions, JUMP/JUMP END (JMP/JME) instructions, or SUBROUTINE
CALL/SUBROUTINE ENTRY (SBS/SBN) instructions be split between two
tasks.

Interrupt task can be executed as cyclic tasks by starting them with TKON.
These are called “extra cyclic tasks.” Extra cyclic tasks (interrupt task numbers
0 to 255) are executed starting at the lowest task number after execution of
the normal cyclic task (celiac task numbers 0 to 31) has been completed.

53

Programming with Tasks

Section 2-1

Cyclic task 0 l

]
O

l END

Cyclic task n

]
O

END

Executed in order starting at
lowest number of the cyclic tasks.

> Normal cyclic tasks

!

Extra cyclic task 0
\

O

—{ Enp -

Executed in order starting at lowest
number of the extra cyclic tasks.

> Extra cyclic tasks
Extra cyclic task m

1/0 refresh

Peripheral
processing

i

)

2-1-4 Types of Tasks

Cyclic Tasks

Interrupt Tasks

54

Tasks are broadly classified as either cyclic tasks or interrupt tasks. Interrupt
tasks are further divided into scheduled, input, high-speed counter, and exter-
nal interrupt tasks. Interrupt tasks can also be executed as extra cyclic tasks.

A cyclic task that is READY will be executed once each cycle (from the top of
the program until the END(001) instruction) in numerical order starting at the
task with the lowest number. The maximum number of cyclic tasks is 32.
(Cyclic task numbers: 00 to 31).

An interrupt task will be executed if an interrupt occurs even if a cyclic task
(including extra cyclic tasks) is currently being executed. The interrupt task
will be executed using any time in the cycle, including during user program
execution, I/O refreshing, or peripheral servicing, when the execution condi-
tion for the interrupt is met.

Interrupt tasks can also be executed as extra cyclic tasks.

Programming with Tasks

Section 2-1

Input Interrupts (Direct
Mode and Counter Mode)

Scheduled Interrupt Tasks

High-speed Counter
Interrupts

External Interrupt Tasks
(CP1H CPU Units)

Extra Cyclic Tasks

Note

An interrupt task can be executed each time one of the built-in inputs on the
CPU Unit turns ON or OFF (Direct Mode) or when a specified number of
inputs has been counted (Count Mode).

CPU Unit model Number of tasks | Interrupt task numbers
CP1H |Xor XA 8 tasks max. 140 to 147

Y 6 tasks max. 140 to 145
CP1L M (30 or 40 I/O points) 6 tasks max. 140 to 145

L (20 I/O points) 6 tasks max. 140 to 145

L (14 1/O points) 4 tasks max. 140 to 143

A scheduled interrupt task will be executed at a fixed interval based on the
internal timer of the CPU Unit. Only one scheduled interrupt tasks can be
used (interrupt task number:2).

Pulse inputs to a built-in high-speed counter in the CPU Unit can be counted
to trigger execution of an interrupt.

A user-specified interrupt task (interrupt task numbers 0 to 255) can be exe-
cuted when an external interrupt occurs.

The interrupt task will be executed when requested by a user program running
in a CJ-series Special I/0 Unit or CJ-series CPU Bus Unit.

Up to 256 external interrupt tasks can be used (interrupt task numbers: 0 to
255). If an external interrupt task has the same number as scheduled, input,
or high-speed counter interrupt task, the interrupt task will be executed for
either condition (the two conditions will operate with OR logic) but basically
task numbers should not be duplicated.

An interrupt tasks can be executed every cycle, just like the normal cyclic
tasks. Extra cyclic tasks (interrupt task numbers 0 to 255) are executed start-
ing at the lowest task number after execution of the normal cyclic task (cyclic
task numbers 0 to 31) has been completed. The maximum number of extra
cyclic tasks is 256 (Interrupt task numbers: 0 to 255). Cycle interrupt tasks,
however, are different from normal cyclic tasks in that they are started with
TKON(820), i.e., they cannot be started automatically at startup.

If an extra cyclic task has the same number as a scheduled, input, or high-
speed counter interrupt task, the interrupt task will be executed for either con-
dition (the two conditions will operate with OR logic). Do not use interrupt
tasks both as normal interrupt tasks and as extra cyclic tasks.

(1) Also, TKON(820) and TKOF(821) cannot be used in extra cyclic tasks,
meaning that normal cyclic tasks and other extra cyclic tasks cannot be
controlled from within an extra cyclic task.

(2) The differences between normal cyclic tasks and extra cyclic tasks are
listed in the following table.

Iltem Extra cyclic tasks Normal cyclic tasks

Activating at startup | Not supported. Supported. (Set from CX-
Programmer.)

Using TKON(820) Not supported. Supported.

and TKOF(821)

inside task

Task Flags Not supported. Supported. (Cyclic task
numbers 00 to 31 corre-
spond to Task Flags TKOO to
TK31.)

55

Programming with Tasks

Section 2-1

Item

Extra cyclic tasks

Normal cyclic tasks

Initial Task Execution
Flag (A200.15) and
Task Start Flag
(A200.14)

Not supported.

Supported.

Index (IR) and data
(DR) register values

be read.

Not defined when task is
started (same as normal
interrupt tasks). Values at
the beginning of each
cycle are undefined.
Always set values before
using them. Values set in
the previous cycle cannot

Undefined at the beginning
of operation. Values set in
the previous cycle can be
read.

2-1-5 Task Execution Conditions and Settings

The following table describes task execution conditions, related settings, and

status.
Task No. Execution condition Related Setting

Cyclic tasks 0to 31 Executed once each cycle if READY |None

(set to start initially or started with the

TKON(820)instruction) when the right

to execute is obtained.
Interrupt | Scheduled Interrupt task 2 | Executed once every time the preset | The scheduled interrupt time is set
tasks interrupt task 0 period elapses according to the inter- | (0 to 9999) through the SET INTER-

nal timer of CPU Unit.

RUPT MASK instruction
(MSKS(690)).

* Scheduled interrupt unit (10 ms, 1.0
ms, or 0.1 ms) is set in PLC Setup.

Input interrupt

Interrupt tasks

Executed when the corresponding

* Masks for designated inputs are

tasks 0to 7 140 to 147 CPU Unit built-in input turns ON or canceled through the SET INTER-
turns OFF. RUPT MASK instruction
(MSKS(690)).
High-speed Interrupt tasks | Executed when corresponding target
counter inter- |0 to 255 or range comparison condition is met
rupt tasks for CPU Unit built-in high-speed

counter.

External inter-
rupt tasks
(CP1H only)

Interrupt tasks
0to 255

Executed when requested by a user
program in a Special I/O Unit or CPU
Bus Unit.

None (always enabled)

Extra cyclic tasks 0 to 255

Interrupt tasks
0to 255

Executed once each cycle if READY
(started with the TKON(820) instruc-
tion) when the right to execute is
obtained.

None (always enabled)

2-1-6 Cyclic Task Status

This section describes cyclic task status, including extra cyclic tasks.

Cyclic tasks always have one of four statuses: Disabled, READY, RUN (exe-
cutable), and standby (WAIT).

Disabled Status (INI)

READY Status

56

A task with Disabled status is not executed. All cyclic tasks have Disabled sta-

tus in PROGRAM mode. Any cycle task that shifted from this to another status
cannot return to this status without returning to PROGRAM mode.

A task attribute can be set to control when the task will go to READY status.
The attribute can be set to either activate the task using the TASK ON instruc-
tion or when RUN operation is started.

Programming with Tasks

Section 2-1

Instruction-activated
Tasks

Operation-activated Tasks

Note

RUN Status

Standby Status

Note

A TASK ON instruction (TKON(820)) is used to switch an instruction-activated
cyclic task from Disabled status or Standby status to READY status.

An operation-activated cyclic task will switch from Disabled status to READY
status when the operating mode is changed from PROGRAM to RUN or
MONITOR mode. This applies only to normal cyclic tasks.

The CX-Programmer can be used to set one or more tasks to go to READY
status when operation is started for task numbers 0 through 31. The setting,
however, is not possible with extra cyclic tasks.

A cyclic task that is READY will switch to RUN status and be executed when
the task obtains the right to execute.

A TASK OFF (TKOF(821)) instruction can be used to change a cyclic task
from Disabled status to Standby status.

The task programs for CP-series PLCs can be monitored online from the CX-
Programmer to see if they are executing or stopped. The status indications on
the CX-Programmer are as follows:

* Running: The task is in READY or RUN status. (There is no way to tell the
difference between these.)

* Stopped: The task is in INI or WAIT status. (There is no way to tell the dif-
ference between these.)

2-1-7 Status Transitions

Activated at the start of

operation (See note 1.) or the ; ;
TKON(820) instruction Right to execute obtained.

INI (Disabled) status

READY status RUN status

Executed

TKON(820) instruction TKOF(821) instruction (See note 2.)

Note

Standby status

(1) Activation at the start of operation is possible for normal cyclic tasks only.
It is not possible for extra cyclic tasks.

(2) A task in RUN status will be put into Standby status by the TKOF(821) in-
struction even when the TKOF(821) instruction is executed within that
task.

Standby status functions exactly the same way as a jump (JMP-JME). Output
status for the Standby task will be maintained.

A

JMP

A

JME

A
B Standby status = Jump
C

57

Using Tasks

Section 2-2

2-2
2-2-1

58

Conventional program

Instructions will not be executed in Standby status, so instruction execution
time will not be increased. Programming that does not need to be executed all
the time can be made into tasks and assigned Standby status to reduce cycle
time.

Reduced cycle time

Task

A
A
v \ 4
_‘ Executes under Al instructi il
set conditions Instructions wi B
B be executed un-
less jumps or other
functions are used.
104

——{ }——— Executes under
set conditions

D

; l
v

vy

Note

Using Tasks
TASK ON and

Standby status simply means that a task will be skipped during task execu-
tion. Changing to Standby status will not end the program.

TASK OFF

The TASK ON (TKON(820)) and TASK OFF (TKOF(821)) instructions switch a
cyclic task (including extra cyclic tasks) between READY and Standby status
from a program.

TKON N: Task No. A task will go to READY status when the
execution condition is ON, and the corre-
N sponding Task Flag will turn ON.
| TKOF N: Task No. A task will go to Standby status when
the execution condition is ON, and the
N corresponding Task Flag will turn OFF.

The TASK ON and TASK OFF instructions can be used to change any cyclic
task (including extra cyclic tasks) between READY and Standby status at any
time.

A cyclic task that is in READY status will maintain that status in subsequent
cycles, and a cyclic task that is in Standby status will maintain that status in
subsequent cycles.

The TASK ON and TASK OFF instructions can be used only within cyclic
tasks and not within interrupt tasks.

Usin,_g Tasks Section 2-2

Note At least one cyclic task must be in READY status in each cycle. If there is not
cyclic task in READY status, the Task Error Flag (A295.12) will turn ON, and
the CPU Unit will stop running.

Example: Cyclic Task I

Cyclic task 0
(READY status

A
—i at the start of
operation)
B -
4{ t»———JTKON 2 }_
Cyclic task 1
C
-_‘ }—TKON 3 1
D Cyclic task 2
_{ ’—TKOF 0 L

-
Cyclic task 3

1) Task O will be J 2) Task 1 will got l

in READY ask 1 will.go to .)

status at the Cyclic task 0 READY status if A is |Cyclic task 0 3) -SrtaSkd%Wlllt gto tqf b

start of opera- ON, and tasks 2 and S %”N y status |

tion. > 3 will remain on = is ON.

Disabled status.
Other tasks will re- [Cyclic task 1 Cyclic task 1) . |cyclic task 1
main in Disabled Other tasks will remain in
status. - ¥ their current status. ¥
Cyclic task 2 Cyclic task 2 Cyclic task 2
- + >
Cyclic task 3 Cyclic task 3 Cyclic task 3
D READY status
[j Standby status/Disabled status
Tasks and the A cyclic task (including an extra cyclic task) that is in READY status will main-
Execution Cycle tain that status in subsequent cycles.
READY {0 X
; tus at the .
Cyclic task 1 start of_igb- Cyclic task 1 READY status
TKON(820) eratfllgn
Cyclic task 2 L READY Cyclic task 2 | READY status

l . status l

59

Using Tasks Section 2-2

A cyclic task that is in Standby status will maintain that status in subsequent
cycles. The task will have to be activated using the TKON(820) instruction in
order to switch from Standby to READY status.

Standby
Cyclic task 1 gstngy Cyclic task 1 status
TKON |
TKOF(821) (820) . / il
Cyclic task 2 RUN status Cyclic task 2 | RUN status

If a TKOF(821) instruction is executed for the task it is in, the task will stop
being executed where the instruction is executed, and the task will shift to
Standby status.

Task 2

H TKOF 2 |

>| Task execution will
stop here and the task
will shift to Standby
status.

Cyclic Task Numbers If task m turns ON task n and m > n, task n will go to READY status the next
and the Execution cycle.
Cycle (Including Extra Example: If task 5 turns ON task 2, task 2 will go to READY status the next
Cyclic Tasks) cycle.
If task m turns ON task n and m < n, task n will go to READY status the same
cycle.
Exampile: If task 2 turns ON task 5, task 5 will go to READY status in the
same cycle.
If task m places task n in Standby status and m > n, will go to Standby status
the next cycle.
Example: If task 5 places task 2 in Standby status, task 2 will go to Standby
status the next cycle.
If task m places task n in Standby status and m < n, task n will go to Standby
status in the same cycle.

Example: If task 2 places task 5 in Standby status, task 5 will go to Standby
status in the same cycle.

Relationship of Tasks There are two different ways to use Index Registers (IR) and Data Registers
to I/0 Memory (DR): 1) Independently by task or 2) Shared by all task.

With independent registers, IR0 used by cyclic task 1 for example is different
from IR0 used by cyclic task 2. With shared registers, IR0 used by cyclic task
1 for example is the same as IR0 used by cyclic task 2.

The setting that determines if registers are independent or shared is made
from the CX-Programmer.

60

Using Tasks

Section 2-2

Relationship of Tasks to

Timer Operation

Relationship of Tasks to

Condition Flags

e Other words and bits in I/O Memory are shared by all tasks. CIO 10.00 for
example is the same bit for both cyclic task 1 and cyclic task 2. Therefore,
be very careful in programming any time I/O memory areas other than the
IR and DR Areas are used because values changed with one task will be
used by other tasks.

1/0 memory Relationship to tasks

CIO, Auxiliary, Data Memory and all other | Shared with other tasks.
memory areas except the IR and DR Areas.

Index registers (IR) and data registers (DR) | Used separately for each task.
(See note.)

Note IR and DR values are not set when interrupt tasks (including extra
cyclic tasks) are started. If IR and DR are used in an interrupt task,
these values must be set by the MOVR/MOVRW (MOVE TO REG-
ISTER and MOVE TIMER/COUNTER PV TO REGISTER) instruc-
tions within the interrupt task. After the interrupt task has been
executed, IR and DR will return to their values prior to the interrupt
automatically.

Timer present values for TIM, TIMX, TIMH, TIMHX, TMHH, TMHHX, TIMW,
TIMWX, TMHW, and TMHWX programmed for timer numbers TO0OO0O to
TO015 will be updated even if the task is switched or if the task containing the
timer is changed to Standby status or back to READY status.

If the task containing TIM goes to Standby status and is the returned to
READY status, the Completion Flag will be turned ON if the TIM instruction is
executed when the present value is 0. (Completion Flags for timers are
updated only when the instruction is executed.) If the TIM instruction is exe-
cuted when the present value is not yet 0, the present value will continue to be
updated just as it was while the task was in READY status.

* The present values for timers programmed with timer numbers T0016 to
T4095 will be maintained when the task is in Standby status.

All Condition Flags will be cleared before execution of each task. Therefore
Condition Flag status at the end of task 1 cannot be read in task 2. CCS(282)
and CCL(283) can be used to read Condition Flag status from another part of
the program, e.g., from another task.

2-2-2 Task Instruction Limitations

Instructions Required
in the Same Task

The following instructions must be placed within the same task. Any attempt
to split instructions between two tasks will cause the ER Flag to turn ON and
the instructions will not be executed.

Mnemonic Instruction
JMP/JME JUMP/JUMP END
CJP/UME CONDITIONAL JUMP/JUMP END
CJPN/JME CONDITIONAL JUMP NOT/CONDITIONAL JUMP END
JMPO/JMEQ MULTIPLE JUMP/JUMP END
FOR/NEXT FOR/NEXT
IL/ILC INTERLOCK/INTERLOCK CLEAR
SBS/SBN/RET SUBROUTINE CALL/SUBROUTINE ENTRY/SUBROUTINE
RETURN
MCRO/SBN/RET MACRO/SUBROUTINE ENTRY/SUBROUTINE RETURN
BPRG/BEND BLOCK PROGRAM BEGIN/BLOCK PROGRAM END
STEP /SNXT STEP DEFINE

61

Using Tasks

Section 2-2

Instructions Not
Allowed in Interrupt
Tasks

The following instructions cannot be placed in interrupt tasks. Any attempt to
execute one of these instructions in an interrupt task will cause the ER Flag to
turn ON and the instruction will not be executed.The following instructions can
be used if an interrupt task is being used as an extra task.

Mnemonic Instruction
TKON(820) TASK ON
TKOF(821) TASK OFF
STEP STEP DEFINE
SNXT STEP NEXT
STUP CHANGE SERIAL PORT SETUP
DI DISABLE INTERRUPT
El ENABLE INTERRUPT

The operation of the following instructions is unpredictable in an interrupt task:
TIMER: TIM and TIMX(550), HIGH-SPEED TIMER: TIMH(015) and
TIMHX(551), ONE-MS TIMER: TMHH(540) and TMHHX(552), ACCUMULA-
TIVE TIMER: TTIM(087) and TTIMX(555), MULTIPLE OUTPUT TIMER:
MTIM(543) and MTIMX(554), LONG TIMER: TIML(542) and TIMLX(553),
TIMER WAIT: TIMW(813) and TIMWX(816), HIGH-SPEED TIMER WAIT:
TMHW(815) and TMHWX(817), PID CONTROL: PID(190), FAILURE POINT
DETECTION: FPD(269), and CHANGE SERIAL PORT SETUP: STUP(237).

2-2-3 Flags Related to Tasks

Flags Related to

The following flag work only for normal cyclic tasks. They do not work for extra

Cyclic Tasks cyclic tasks.
Task Flags A Task Flag is turned ON when a cyclic task in READY status and is turned
(TKO0O to TK31) OFF when the task is in Disabled (INI) or in Standby (WAIT) status. Task num-
bers 00 to 31 correspond to Task Flags TKOO to TK31.
Task 3 #=—— Cycle bl ¢ Cycle P— I .+ Cycle —»

Disabled

READY READY Standby

Task Flag for task 3

Note

Initial Task Execution Flag
(A200.15)

62

Task Flags are used only with cyclic tasks and not with interrupt tasks. With
an interrupt task, A441.15 will turn ON if an interrupt task executes after the
start of operation, and the number of the interrupt task that required for maxi-
mum processing time will be stored in two-digit hexadecimal in A441.00 to
A441.07.

The Initial Task Execution Flag will turn ON when cyclic tasks shift from Dis-
abled (INI) to READY status, the tasks obtain the right to execute, and the
tasks are executed the first time. It will turn OFF when the first execution of the
tasks has been completed.

Ready Ready
Disabl | I Disabl | |
Task n isabled isabled
Initial Task |_|
Execution Flag

Using Tasks Section 2-2

The Initial Task Execution Flag tells whether or not the cyclic tasks are being
executed for the first time. This flag can thus be used to perform initialization
processing within the tasks.

Initial Task Execution Flag

A200.15 .
Initializing
processing

h_//—/

Note Even though a Standby cyclic task is shifted back to READY status through
the TKON(820) instruction, this is not considered an initial execution and the
Initial Task Execution Flag (A200.15) will not turn ON. The Initial Task Execu-
tion Flag (A200.15) will also not turn ON if a cyclic task is shifted from Dis-
abled to RUN status or if it is put in Standby status by another task through the
TKOF(821) instruction before the right to execute actually is obtained.

Task Start Flag (A200.14) The Task Start Flag can be used to perform initialization processing each time
the task cycle is started. The Task Start Flag turns OF whenever cycle task
status changes from Disabled (INI) or Standby (WAIT) status to READY status
(whereas the Initial Task Execution Flag turns ON only when status changes
from Disabled (INI) to READY).

Ready Ready

Taskn Disabled | I Disabled | I
Task Start Flag |—| |_|

The Task Start Flag can be used to perform initialization processing whenever
a task goes from Standby to RUN status, i.e., when a task on Standby is
enabled using the TRON(820) instruction.

Task Start Flag
A200.14

{ Initialization
processing

\//

Flags Related to All Tasks

Task Error Flag (A295.12) The Task Error Flag will turn ON if one of the following task errors occurs.
* No cyclic tasks (including extra cyclic tasks) are READY during a cycle.

* The program allocated to a cyclic task (including extra cyclic tasks) does
not exist. (This situation will not occur when using the CX-Programmer.)

* No program is allocated to an activated interrupt task.

63

Using Tasks

Section 2-2

Task Number when
Program Stopped (A294)

64

The type of task and the current task number when a task stops execution
due to a program error will be stored as follows:

Type

A294

Cyclic task

0000 to 001F hex (correspond to task numbers 0 to 31)

Interrupt task

8000 to 80FF hex (correspond to interrupt task numbers 0 to 255)

This information makes it easier to determine where the fatal error occurred,
and it will be cleared when the fatal error is cleared. The program address
where task operation stopped is stored in A298 (rightmost bits of the program
address) and in A299 (leftmost bits of the program address).

Using Tasks

Section 2-2

2-2-4

Examples of Tasks

An overall control task that is set to go to READY status at the start of opera-
tion is generally used to control READY/Standby status for all other cyclic
tasks (including extra cyclic tasks). Of course, any cyclic task can control the
READY/Standby status of any other cyclic task as required by the application.

A
From Program Mode to Operating or Monitor Mode/ TKON 1 —
I
Cyclic task 0 with the startup at B
the start of operation attribute TKON 2 -
(overall control task)
C
l TKON 3 —
+—A ~}-8 4+
D
TKOF 1]
Cyclic task 1 Cyclic task 2 Cyclic task 3
E
% TKOF 2 —
Tasks Separated by Function Tasks Separated by Controlled Section
o] A-section control
» Conveyor task task
_ —— Overall control task
Overall control task » » Error monitoring -
task B-section control
task
» MMI task
C-section control
task
5| Communications
" | task
»| Analog processing
task
Tasks Separated by Product Tasks Separated by Developer
»| Product A task Developer A task
Overall control task
Product B task 8\$rall control 1y, Developer B task
Product C task L Developer C task

Tasks Separated by Process

Overall control task

Machining task

Assembly task

Conveyor task

Combinations of the above classifications are also possible, e.g., classifica-
tion by function and process.

65

Using Tasks

Section 2-2

2-2-5 Designing Tasks

66

—_—

Order priority

External I/O

1,2,3...

We recommend the following guidelines for designing tasks.

1.

Use the following standards to study separating tasks.

a. Summarize specific conditions for execution and non-execution.
b. Summarize the presence or absence of external I/O.

c. Summarize functions.

Keep data exchanged between tasks for sequence control, analog
control, man-machine interfacing, error processing and other process-
es to an absolute minimum in order to maintain a high degree of au-
tonomy.

d. Summarize execution in order of priority.
Separate processing into cyclic and interrupt tasks.

Breakdown by function
/

Interrupt /

"4

Input
proces-
sing

Overall | Error processing I

|

control
(may in- | Sequence control |

Output

¥» clude error processingf———»
processing

»in some

[Analog control]

External outputs

cases) I Man-machine interfacing|

2. Be sure to break down and design programs in a manner that will ensure

autonomy and keep the amount of data exchanged between tasks (pro-
grams) to an absolute minimum.

E &Q excrange - L1

0

T

A4

Generally, use an overall control task to control the READY/Standby status
of the other tasks.

Allocate the lowest numbers to tasks with the highest priority.
Example: Allocate a lower number to the control task than to processing
tasks.

Allocate lower numbers to high-priority interrupt tasks.

A task in READY status will be executed in subsequent cycles as long as
the task itself or another task does not shift it to Standby status. Be sure to
insert a TKOF(821) (TASK OFF) instruction for other tasks if processing is
to be branched between tasks.

Use the Initial Task Execution Flag (A200.15) or the Task Start Flag
(A200.14) in the execution condition to execution instructions to initialize
tasks. The Initial Task Execution Flag will be ON during the first execution
of each task. The Task Start Flag each time a task enters READY status.

Using Tasks Section 2-2

8. Assign I/O memory into memory shared by tasks and memory used only
for individual tasks, and then group I/O memory used only for individual
tasks by task.

Relationship of Tasks to Up to 128 block programs can be created in the tasks. This is the total number

Block Programs for all tasks. The execution of each entire block program is controlled from the
ladder diagram, but the instructions within the block program are written using
mnemonics. In other words, a block program is formed from a combination of
a ladder instruction and mnemonic code.

Using a block program makes it easier to write logic flow, such as conditional
branching and process stepping, which can be hard to write using ladder dia-
grams. Block programs are located at the bottom of the program hierarchy,
and the larger program units represented by the task can be split into small
program units as block programs that operate with the same execution condi-
tion (ON condition).

Program // 0.00
{

Block program 000 — | Bg(:)G e

Block 001 _|— Block program area 000
ock program
\ Block program n
0.01 -
— | BPRG |
001

. | — Block program area 001

67

Interrupt Tasks

Section 2-3

2-2-6 Global Subroutine

A subroutine in one task cannot be called from other tasks. A subroutine
called a global subroutine can be created in interrupt task number 0, and this
subroutine can be called from cyclic tasks (including extra cyclic tasks).

GSBS(750) is used to call a global subroutine. The subroutine number must
be between 0 and 255. The global subroutine is defined at the end of interrupt
task number 0 (just before END(001)) between GSBN(751) and GRET(752)

2-3

instructions.

Global subroutines can be used to create a library of standard program sec-
tions that can be called whenever necessary.

Cyclic task (including
extra cyclic task)

— j Call

Interrupt task 0

GSBN
n

n=0to 1,023

Exe-
cution

Return y

Global subroutine
(shared subroutine
used for standard
programming)

GRET

Multiple tasks

/

Cyclic task (including
extra cyclic task)

END

P

ml

Interrupt Tasks

Call
—

P <

Return

\f

2-3-1 Types of Interrupt Tasks
List of Interrupt Tasks
Type Task Execution condition Setting procedure Number of Application
No. interrupts examples
CP1H 140 to | Aninterrupt occurs when | Use the SET INTER- 8 points Increasing
Input | X/XA: 0to 7 147 an interrupt input built RUPT MASK instruction response speed to
Inter- [cp1H 140 to | into the CPU Unitturns | MSKS(690) to specify 6 points specific inputs
rupts |y- g to 5 145 ON or OFF in Direct which interrupt inputs
Mode or when a speci- | are enabled. -
CPiL 14010 | fied number of ON or 6 points
M, or L (20 I/O): | 145 OFF signals is detected
Oto5 at the interrupt input in
CP1L 140 to | Counter Mode. 4 points
L (141/0): 0to 3 | 143
High-speed counter Oto An interrupt occurs when | Use the COMPARISON | 256 points | Performing posi-
interrupts 255 a condition is met fora | TABLE LOADinstruction tioning operations
target value or range (CTBL(882)) to specify based on counting

comparison for the
present value of a high-
speed counter.

the execution condition
and the interrupt to exe-
cute.

encoder pulses

68

Interrupt Tasks Section 2-3

Type Task Execution condition Setting procedure Number of Application
No. interrupts examples
Scheduled Interrupt 0 |2 An interrupt occurs ata | Use the SET INTER- 1 point Monitoring operat-
scheduled time (fixed RUPT MASK instruction ing status at fixed
intervals). (MSKS(690)) to set the intervals
interrupt interval. See
Scheduled interrupt
interval in PLC Setup.
External Interrupts Oto Interrupts are requested | None (always valid) 256 points | Performing pro-
(Not supported by 255 by an Special I/0O Unit or cessing required
CP1L CPU Units.) CPU Bus Unit. by CJ-series Spe-
cial 1/0O Units

Input Interrupt Tasks Input interrupt tasks are disabled by default when cyclic task execution is
started. To enable input interrupts, execute the SET INTERRUPT MASK
instruction (MSKS(690)) in a cyclic task for the interrupt number.

Using inputs as interrupt inputs must be enabled in advance in the PLC Setup.
Note Do not enable unneeded input interrupt tasks. If the interrupt input is triggered

by noise and there isn’t a corresponding interrupt task, a fatal error (task
error) will cause the program to stop.

Example: The following example shows execution input interrupt task 143
when CIO 0.03 (interrupt input No. 3) turns ON.

Cyclic task MSKS(690) enables the specified
input interrupt (ON, Direct Mode).

- MSKS |
Input interrupt 3

113 ts
#0000 |y_| (ON/OFF designation) l CIO 0.03

™~ ON designation

Input interrupt 3 COM[01 [03] 05
(interruptdesignatign) 00 1 o2 | 04 o6
Interrupts enabled in
Direct Mode.

MSKS +—
103
#0000

END —

/l\—/

Cyclic task Interrupt
%‘
I =
Input interrupt task 143
END]
O
% END

]

e CP1H X and XA CPU Units

Interrupt | Inputinterrupt | Interrupt
input number task number
ClO 0.00 0 140
ClO 0.01 1 141
ClO 0.02 2 142

69

Interrupt Tasks Section 2-3

Interrupt | Inputinterrupt | Interrupt

input number task number
ClO 0.03 3 143
CIO 1.00 4 144
CIO 1.01 5 145
ClO 1.02 6 146
ClO 1.03 7 147

CP1HY CPU Units

Interrupt | Inputinterrupt | Interrupt

input number task number
ClO 0.00 0 140
CIO 0.01 1 141
CIO 1.00 2 142
CIO 1.01 3 143
ClO 1.02 4 144
ClO 1.03 5 145

e CP1L M and L (20 I/0-point) CPU Units

Interrupt | Inputinterrupt | Interrupt
input number task number
ClO 0.04 0 140
ClO 0.05 1 141
ClO 0.06 2 142
ClO 0.07 3 143
ClO 0.08 4 144
ClO 0.09 5 145

CP1L L (14 I/O-point) CPU Units

Interrupt | Inputinterrupt | Interrupt

input number task number
ClO 0.04 0 140
CIO 0.05 1 141
CIO 0.06 2 142
ClO 0.07 3 143

70

Interrupt Tasks

Section 2-3

High-speed Counter
Interrupt Tasks:
Tasks 0 to 255

Cyclic task

High-speed counter interrupt tasks are enabled by executing the COMPARI-
SON TABLE LOADinstruction (CTBL(882)) to specify the execution condition
and the interrupt to execute. The comparison condition consists of target val-
ues or a comparison range.

Example

The following example illustrates executing high-speed interrupt task 10 when
the present value of high-speed counter 0 equals the target value when the
present value is incremented.

}7

High-speed counter 0

Register comparison table and

Scheduled Interrupt
Task: Task 2

1,2,3...

Note

w | start comparison.
| T~First word in comparison table
po [0oo1 | One target value
/\/ ot gggg Target value: 0000 2710 hex (10,000)
D3 [00oa | Compare when incrementing (bit 15: ON),
Interrupt task: 10 (OA hex)
Cyclic task Talrget Target value for high-speed counter 0
—| lomparison L0 0o Te 71 0]
O started with High-speed counter 0
CTBL(82). _ Comparison High-speed counter 0 decrement input
reset input JUUUUL
END CP1H
LT T T T T T T Jg_[comotfoa]os]or]os]
1 PV of high-speed counter 0 [oofo02]04]06]08]
TUUUUL
High-speed counter 0
v increment input
Match

High-speed Counter interrupt task 10

—
H——O-

END

Scheduled interrupt tasks are disabled in the default PLC Setup at the start of
cyclic task execution. Perform the following steps to enable scheduled inter-
rupt tasks.

1. Execute the SET INTERRUPT MASK instruction MSKS(690) from a cyclic

task and set the time (cycle) for the specified scheduled interrupt.
2. Setthe Scheduled interrupt interval in PLC Setup.

The interrupt time setting affects the cyclic task in that the shorter the interrupt
time, the more frequently the task executes and the longer the cycle time.

Example: The following examples shows executed scheduled interrupt task
every second.

71

Interrupt Tasks

Section 2-3

Cyclic task

Scheduled interrupt 0 (Interrupt No.

l_

Cyclic task

14: Reset start)
Interrupt internal: 100 x 10 ms

| Scheduled interrupt time unit in PLC
Setup =10 ms (0.01 s)

Every second

< Interrupt

Scheduled interrupt (Interrupt task 2)

PLC Setup Settings

External Interrupt
Tasks: Tasks 0 to 255

Note

Interrupt Task Priority and
Order of Execution

72

Scheduled Interrupt Numbers and Interrupt Task Number

Scheduled interrupt task
interrupt number

0 2

Set the Scheduled interrupt interval on the Timings Tab Page of the PLC
Setup t0 0.1, 1.0, or 10 ms.

Name Settings
Scheduled interrupt interval 10 ms (default)
1.0ms
0.1 ms

External interrupt tasks can be received at any time. External interrupt pro-
cessing is performed at the CPU Unit in PLCs containing CJ-series Special
I/O Units or CPU Bus Units. Settings don’t have to be made in the CPU Unit.
The specified interrupt task must be programmed in the CPU Unit.

If an external interrupt task (0 to 255) has the same number as the scheduled
interrupt task (task), an input interrupt task (140 to 147), or a high-speed
counter task (0 to 255), the interrupt task will be executed for either interrupt
condition (external interrupt or the other interrupt condition). As a rule, task
numbers should not be duplicated.

All interrupt tasks have the same priority, i.e., once execution of any interrupt
task has started, it will be completed through the end of the task even if
another interrupt occurs during execution. For example, execution of an input
interrupt task will not be interrupted to execute the scheduled interrupt task,
i.e., the scheduled interrupt task will be executed only after completing the
input interrupt task.

Interrupt Tasks

Section 2-3

2-3-2

Maximum Interrupt
Task Processing Time

(A440)

Interrupt Task with
Maximum Processing
Time (A441)

Interrupt Task Error
Flag (Nonfatal Error)

(A402.13)

Interrupt Task Error
Flag (A426.15)/Task

Number Generating
the Interrupt Task
Error (A426.00 to

A426.11)

Task Number when
Program Stopped

(A294)

If more than one interrupt occurs at the same time, the interrupt tasks will be
executed in the following order: Input interrupt tasks (Direct Mode or Counter
Mode), High-speed interrupt tasks, External interrupt tasks, Scheduled inter-
rupt task.

If more than one of the same type of interrupt occurs at the same time, the
one with the lower task number will be executed first.

Keep in mind that the above order of execution means that time may be
required to execute a programmed task even after an interrupt has occurred if
the user program allows the possibility of more than one interrupt occurring at
the same time. For example, the user must give special consideration to the
scheduled interrupt, which may not be executed at the expected time if other
interrupts occur.

Interrupt Task Flags and Words

The maximum processing time for an interrupt task is stored in binary data in
0.1-ms units and is cleared at the start of operation.

The interrupt task number with maximum processing time is stored in binary
data. Here, 8000 to 80FF hex correspond to task numbers 00 to FF hex.

A441.15 will turn ON when the first interrupt occurs after the start of opera-
tion. The maximum processing time for subsequent interrupt tasks will be
stored in the rightmost two digits in hexadecimal and will be cleared at the
start of operation.

If Interrupt Task Error Detection is turned ON in the PLC Setup, the Interrupt
Task Error Flag will turn ON if an interrupt task error occurs.

If A402.13 turns ON, then the following data will be stored in A426.15 and
A426.00 to A426.11.

Interrupt Task Error
Detection is turned ON
in the PLC Setup)

1/O for a large number
of words using
IORF(097) from an
interrupt task while a
CJ-series Special 1/0
Unit is being refreshed

by cyclic I/O refreshing.

A402.13 Interrupt Task Error | A426.15| A426.00 to A426.11
Description
Interrupt Task Error (If | When trying to refresh | ON The unit number of the

CJ-series Special I/0
Unit being refreshed
will be stored in 12 bits
of binary data (unit
number 0 to 95: 000 to
05F hex).

The type of task and the current task number when a program stops due to a
program error will be stored in the following locations.

Type A294
Interrupt task 8000 to 80FF hex (corresponds to interrupt task 0 to 255)
Cyclic task 0000 to 001F hex (corresponds to task 0 to 31)

73

Interrupt Tasks

Section 2-3

2-3-3 Application Precautions

Executing IORF(097)
for a Special I/0 Unit

PLC Setup Settings

Related Auxiliary Area Flags/Words

If an IORF(097) instruction has to be executed from an interrupt task for a CJ-
series Special I/0O Unit, be sure to turn OFF cyclic refresh for the Special 1/0
Unit (using the unit number) in the PLC Setup.

A interrupt task error will occur if you try to refresh a Special I/O Unit with an
IORF(097) instruction from an interrupt task while the Unit is also being
refreshed by cyclic I/O refresh or by 1/O refresh instructions (IORF(097) or
immediate refresh instructions (). If Interrupt Task Error Detection is turned
ON in the PLC Setup when an interrupt task error occurs, A402.13 (Interrupt
Task Error Flag) will turn ON and the unit number of the Special I1/0 Unit for
which I/O refreshing has been duplicated will be stored in A426 (Interrupt
Task Error, Task Number). The CPU Unit will continue running.

CJ-series Special I/O Unit >< O
CP1H /
7

I/O refresh Incorrect Use Correct Use

N YEIE > Do not executed Disable cyclic refresh-
IORF(097) in an interrupt ing for Special I/O Units
task if cyclic refreshing is in the PLC Setup before

enabled for Special I/0 executing the
Interrupt task Units in the PLC Setup. IORF(097) instruction in
an interrupt task.
| IORF
D1
D2
_END |

Select or clear the Detect Interrupt Task Error Checkbox in the Execute Pro-
cess Area on the Settings Tab Page in the PLC Setup.

Name Setting Description
Detect Interrupt Task | Cleared Interrupt task errors not detected.
Error Selected Interrupt Task Error Flag (A402.13) turned
ON when an interrupt task error is detected.

Name Address Description

Interrupt Task Error | A402.13
Flag

Turns ON if you try to refresh a CJ-series Special /0 Unit with IORF(097)
from an interrupt task while that Unit is being refreshed by cyclic 1/O refresh.

Interrupt Task Error | A426
Unit Number

Interrupt Task Error
Factor Flag

Bits 00 to | The unit number of the Special /0 Unit undergoing duplicate refreshing will
11 be stored here when A402.13 turns ON.

Bit 15 Turns ON to indicate the cause of the error when A402.13 turns ON.

Disabling Interrupts

74

With a CP-series CPU Unit, the following processing will be interrupted to exe-
cute an interrupt task.

¢ Instruction execution

* Refreshing for CPU Unit built-in 1/0, CPM1A Expansion Units, CPM1A
Expansion 1/O Units, or CJ-series Special I/O Units

* Peripheral servicing

CX-Programmer Operations for Tasks Section 2-4

Data Concurrency
between Cyclic and
Interrupt Tasks

Data may not be concurrent if a cyclic (including extra cyclic tasks) and an
interrupt task are reading and writing the same 1/0O memory addresses. Use
the following procedure to disable interrupts during memory access by cyclic
task instructions.

* Immediately prior to reading or writing by a cyclic task instruction, use a
DISABLE INTERRUPT (DI(693)) instruction to disable execution of inter-
rupt tasks.

* Use an ENABLE INTERRUPT instruction (EI(694)) immediately after pro-
cessing in order to enable interrupt task execution.

Cyclic task

| o]

Disabled

(—+ Interrupt task

Reading and writing 1/0
memory common to
interrupt tasks.

Enabled
———— Interrupt task

Processing with interrupt task
execution enabled

-

Problems may occur with data concurrency even if DI(693) and EI(694) are
used to disable interrupt tasks during execution of an instruction that requires
response reception and processing (such as a network instruction or serial
communications instruction).

2-4 CX-Programmer Operations for Tasks

CX-Programmer

Note

1,2,3...

Use the CX-Programmer to create cyclic tasks (including extra cyclic tasks).
Be sure to use the CX-Programmer to allocate the task types and task num-

bers.

Specify the task type and number as attributes for each program.
1. Select View/Properties, or click the right button and select Properties
from the popup menu, to display the program that will be allocated a task.

2. Click the General Tab, and select the Task Type and Task No. For a cyclic
task, select the Operation start Option to start the task at startup if re-
quired.

Program Properties
a| General lODmments]

Mame:

Task type: |O'5n:|ic Task 00 (Startup) j

[w Operation start

75

CX-Programmer Operations for Tasks Section 2-4

76

SECTION 3
Instructions

This section describes each of the instructions that can be used in programming CP-series PLCs. Instructions are described
in order of function.

3-1 Notation and Layout of Instruction Descriptions 86
3-2 Sequence Input InStructionsiiiiiiiii i 89
3-2-1 LOAD:LD ... 89
3-2-2 LOADNOT:LDNOT 91
3-2-3 AND: AND. ..o e 93
3-2-4 ANDNOT: ANDNOT. e 95
3-2-5 OR:OR. ... 97
3-2-6 ORNOT: ORNOT e 98
3-2-7 ANDLOAD: ANDLD. i 100
3-2-8 ORLOAD:ORLD. e 102
3-2-9 Differentiated and Immediate Refreshing Instructions. 105
3-2-10 Operation Timing for I/O Instructions 106
3-2-11 TRBItS . oo 107
3-2-12 NOT:NOT(520) . . o ceoe et e e e 108
3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) 109
3-2-14 BIT TEST: TST(350) and TSTN(351) . . .o oo vo vt 110
3-3 Sequence Output InStructionsottt 113
3-3-1 OUTPUT: OUT ... e 113
3-3-2 OUTPUT NOT: OUTNOT ...t 114
3-3-3 KEEP: KEEP(O11) 115
3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014). 119
3-3-5 SET and RESET: SETandRSET........................... 122
3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531) 124
3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)............ 127
3-3-8 SINGLE BIT OUTPUT: OUTB(534), 130
3-4 Sequence Control Instructionsiiiiienenan... 132
3-4-1 END:END(OOL). . ..o 132
3-4-2 NO OPERATION: NOP(000).o e 133
3-4-3 Overview of Interlock Instructions. 133
3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) . 136

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and
MULTI-INTERLOCK CLEAR: MILH(517), MILR(518), and

MILC(S19) . oo 140
3-4-6 JUMP and JUMP END: JMP(004) and IME(005). 154
3-4-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)................ 157
3-4-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JMEO(516) . 161
3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513) 163
3-4-10 BREAK LOOP: BREAK(S514)...... it 166

77

78

3-5

3-6

3-7

3-8

Timer and Counter Instructions. oo,
3-5-1 TIMER: TIM/TIMX(550)o
3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)
3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552).
3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)
3-5-5 LONG TIMER: TIML(542)/TIMLX(553). . . . e e
3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
3-5-7 COUNTER: CNT/CNTX(546). . . . oo oee et
3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
3-5-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547).
3-5-10 Example Timer and Counter Applications
3-5-11 Indirect Addressing of Timer/Counter Numbers
Comparison INStructionso oottt e
3-6-1 Input Comparison Instructions (300 t0 328).
3-6-2 Time Comparison Instructions (341t0346).
3-6-3 COMPARE: CMP(020)ot
3-6-4 DOUBLE COMPARE: CMPL(060)coovvunn..
3-6-5 SIGNED BINARY COMPARE: CPS(114)
3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
3-6-7 MULTIPLE COMPARE: MCMP(019)
3-6-8 TABLE COMPARE: TCMP(085)oiiiiinnnn..
3-6-9 BLOCK COMPARE: BCMP(068).t
3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502).
3-6-11 AREA RANGE COMPARE: ZCP(088).,
3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)............
Data Movement Instructions.ttt
3-7-1 MOVE: MOV(021). . ..ot e
3-7-2 MOVENOT: MVN(022) . ..ot
3-7-3 DOUBLE MOVE: MOVL(498)ot
3-7-4 DOUBLE MOVE NOT: MVNL(499),
3-7-5 MOVEBIT: MOVB(082).t
3-7-6 MOVE DIGIT: MOVD(083)t
3-7-7 MULTIPLE BIT TRANSFER: XFRB(062).
3-7-8 BLOCK TRANSFER: XFER(070),
3-7-9 BLOCK SET: BSET(O71)o
3-7-10 DATA EXCHANGE: XCHG(073) . .. oo oo
3-7-11 DOUBLE DATA EXCHANGE: XCGL(562)
3-7-12 SINGLE WORD DISTRIBUTE: DIST(080).
3-7-13 DATA COLLECT: COLL(081)ottt
3-7-14 MOVE TO REGISTER: MOVR(60)t
3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561). .
Data Shift Instructionsttt
3-8-1 SHIFT REGISTER: SFT(010)
3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)...........

168
170
174
178
181
184
187
193
196
200
203
206
209
209
215
220
222
225
227
230
233
235
238
242
244
247
247
248
250
251
253
255
257
260
262
264
265
267
269
270
272
274
274
276
279

3-9

3-10

3-8-4

3-8-5

3-8-6

3-8-7

3-8-8

3-8-9

3-8-10
3-8-11
3-8-12
3-8-13
3-8-14
3-8-15
3-8-16
3-8-17
3-8-18
3-8-19
3-8-20
3-8-21
3-8-22
3-8-23
3-8-24

WORD SHIFT: WSFT(016). o,
ARITHMETIC SHIFT LEFT: ASL(025).
DOUBLE SHIFT LEFT: ASLL(570).
ARITHMETIC SHIFT RIGHT: ASR(026)
DOUBLE SHIFT RIGHT: ASRL(571)
ROTATE LEFT: ROL(027).o
DOUBLE ROTATE LEFT: ROLL(572).t
ROTATE RIGHT: ROR(028) it
DOUBLE ROTATE RIGHT: RORL(573)
ROTATE LEFT WITHOUT CARRY: RLNC(574)
DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576).
ROTATE RIGHT WITHOUT CARRY: RRNC(575)............
DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577) . ..
ONE DIGIT SHIFT LEFT: SLD(074)
ONE DIGIT SHIFT RIGHT: SRD(075).o....
SHIFT N-BIT DATA LEFT: NSFL(578)
SHIFT N-BIT DATA RIGHT: NSFR(579).
SHIFT N-BITS LEFT: NASL(580)o ...
DOUBLE SHIFT N-BITS LEFT: NSLL(582).................
SHIFT N-BITS RIGHT: NASR(581)............,
DOUBLE SHIFT N-BITS RIGHT: NSRL(583)

Increment/Decrement Instructions,

3-9-1
3-9-2
3-9-3
3-9-4
3-9-5
3-9-6
3-9-7
3-9-8

INCREMENT BINARY: ++(590) o it
DOUBLE INCREMENT BINARY: ++L(591)
DECREMENT BINARY: ——(592).........
DOUBLE DECREMENT BINARY: —-L(593)................
INCREMENT BCD: +4B(594)
DOUBLE INCREMENT BCD: ++BL(595)
DECREMENT BCD: ——B(596) it
DOUBLE DECREMENT BCD: — -BL(597).

Symbol Math InStructions.t i

3-10-1
3-10-2
3-10-3
3-10-4
3-10-5
3-10-6
3-10-7
3-10-8
3-10-9

SIGNED BINARY ADD WITHOUT CARRY: +(400)..........
DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
SIGNED BINARY ADD WITH CARRY: +C(402).............
DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403). ..
BCD ADD WITHOUT CARRY: +B(404).
DOUBLE BCD ADD WITHOUT CARRY: +BL(405)..........
BCD ADD WITH CARRY: +BC(406)
DOUBLE BCD ADD WITH CARRY: +BCL407).
SIGNED BINARY SUBTRACT WITHOUT CARRY: —(410). . ..

3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY:

281
283
284
286
287
289
290
292
294
295
297
299
300
302
303
305
307
309
311
314
317
320
320
322
324
326
328
330
332
334
336
337
339
341
343
345
346
348
349
351

353
357

359
361

79

80

3-12

3-10-14 DOUBLE BCD SUBTRACT WITHOUT

CARRY: -BL(415)

3-10-15 BCD SUBTRACT WITH CARRY: -BC(416).
3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: -BCL(417).......

3-10-17 SIGNED BINARY MULTIPLY: *(420). .

3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)............
3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)........

3-10-21 BCD MULTIPLY: *B(424)............
3-10-22 DOUBLE BCD MULTIPLY: *BL(425). .
3-10-23 SIGNED BINARY DIVIDE: /(430).

3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)

3-10-25 UNSIGNED BINARY DIVIDE: /U(432)

3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)...........

3-10-27 BCD DIVIDE: /B(434).
3-10-28 DOUBLE BCD DIVIDE: /BL(435).
Conversion Instructions.
3-11-1 BCD-TO-BINARY: BIN(023)

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)...........

3-11-3 BINARY-TO-BCD: BCD(024).........

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)

3-11-5 2’S COMPLEMENT: NEG(160).

3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)

3-11-8 DATA DECODER: MLPX(076)
3-11-9 DATA ENCODER: DMPX(077)
3-11-10 ASCII CONVERT: ASC(086)
3-11-11 ASCII TO HEX: HEX(162)
3-11-12 COLUMN TO LINE: LINE(063).
3-11-13 LINE TO COLUMN: COLM(064)
3-11-14 SIGNED BCD-TO-BINARY: BINS(470)

3-11-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472)............

3-11-16 SIGNED BINARY-TO-BCD: BCDS(471)

3-11-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL(473)

3-11-18 GRAY CODE CONVERT: GRY(474). ..
Logic Instructionscoovuinin...
3-12-1 LOGICAL AND: ANDW(034)
3-12-2 DOUBLE LOGICAL AND: ANDL(610)
3-12-3 LOGICAL OR: ORW(035)
3-12-4 DOUBLE LOGICAL OR: ORWL(611). .
3-12-5 EXCLUSIVE OR: XORW(036).
3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
3-12-7 EXCLUSIVE NOR: XNRW(037)

3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613)

3-12-9 COMPLEMENT: COM(029)..........
3-12-10 DOUBLE COMPLEMENT: COML(614)

363
366
367
369
371
372
374
375
377
378
380
382
384
385
387
389
389
390
392
393
395
397
398
400
404
408
411
415
417
419
422
424
427
430
436
436
437
439
440
442
444
445
447
449
450

3-13 Special Math Instructions
3-13-1 BINARY ROOT: ROTB(620).
3-13-2 BCD SQUARE ROOT: ROOT(072).

3-13-3 ARITHMETIC PROCESS: APR(069).
3-13-4 FLOATING POINT DIVIDE: FDIV(079)....................

3-13-5 BIT COUNTER: BCNT(067).
3-14 Floating-point Math Instructions
3-14-1 FLOATING TO 16-BIT: FIX(450). .

3-14-2 FLOATING TO 32-BIT: FIXL(451)

3-14-3 16-BIT TO FLOATING: FLT(452) .

3-14-4 32-BIT TO FLOATING: FLTL(453)

3-14-5 FLOATING-POINT ADD: +F(454).

3-14-6 FLOATING-POINT SUBTRACT: -F(455)
3-14-7 FLOATING-POINT MULTIPLY: *F(456).
3-14-8 FLOATING-POINT DIVIDE: /E(457).
3-14-9 DEGREES TO RADIANS: RAD(#458)ot
3-14-10 RADIANS TO DEGREES: DEG(459)

3-14-11 SINE: SIN(460)ovvn. ..
3-14-12 COSINE: COSM61).
3-14-13 TANGENT: TAN(462)
3-14-14 ARC SINE: ASIN(463)
3-14-15 ARC COSINE: ACOS(464)
3-14-16 ARC TANGENT: ATAN(465)
3-14-17 SQUARE ROOT: SQRT(466)
3-14-18 EXPONENT: EXP(467).
3-14-19 LOGARITHM: LOG(468)

3-14-20 EXPONENTIAL POWER: PWR(840)
3-14-21 Single-precision Floating-point Comparison Instructions
3-14-22 FLOATING-POINT TO ASCII: FSTR(448)
3-14-23 ASCII TO FLOATING-POINT: FVAL(449)

3-15 Double-precision Floating-point Instructions .

3-15-1 DOUBLE FLOATING TO 16-BIT: FIXD(841).
3-15-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842)
3-15-3 16-BIT TO DOUBLE FLOATING: DBL(843)
3-15-4 32-BIT TO DOUBLE FLOATING: DBLL(844)
3-15-5 DOUBLE FLOATING-POINT ADD: +D(845)................
3-15-6 DOUBLE FLOATING-POINT SUBTRACT: -D(846)
3-15-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)...........
3-15-8 DOUBLE FLOATING-POINT DIVIDE: /D(848)..............
3-15-9 DOUBLE DEGREES TO RADIANS: RADD(849)
3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850)

3-15-11 DOUBLE SINE: SIND(851)
3-15-12 DOUBLE COSINE: COSD(852). ..
3-15-13 DOUBLE TANGENT: TAND(853).

3-15-14 DOUBLE ARC SINE: ASIND(854)

451
451
453
456
467
470
472
478
480
481
483
484
486
488
490
492
493
495
496
498
500
502
503
505
507
509
511
512
516
521
525
530
532
533
534
536
538
540
542
544
545
547
548
550
551

81

82

3-16 Table Data Processing Instructions
SET STACK: SSET(630)
PUSH ONTO STACK: PUSH(632)............
FIRST IN FIRST OUT: FIFO(633)
LAST IN FIRST OUT: LIFO(634)
DIMENSION RECORD TABLE: DIM(631).
SET RECORD LOCATION: SETR(635)
GET RECORD NUMBER: GETR(636)
DATA SEARCH: SRCH(181)
SWAP BYTES: SWAP(637).
FIND MAXIMUM: MAX(182)
FIND MINIMUM: MIN(183)
SUM: SUM(184) . .coviiii i
FRAME CHECKSUM: FCS(180)
STACK SIZE READ: SNUM(638)
STACK DATA READ: SREAD(639)...........

3-17

3-18

3-15-15
3-15-16
3-15-17
3-15-18
3-15-19

DOUBLE ARC COSINE: ACOSD(855)........
DOUBLE ARC TANGENT: ATAND(856)
DOUBLE SQUARE ROOT: SQRTD(857)
DOUBLE EXPONENT: EXPD(858)...........
DOUBLE LOGARITHM: LOGD(859).........

3-15-20 DOUBLE EXPONENTIAL POWER: PWRD(@®60)

3-15-21 Double-precision Floating-point Input Instructions

3-16-1
3-16-2
3-16-3
3-16-4
3-16-5
3-16-6
3-16-7
3-16-8
3-16-9
3-16-10
3-16-11
3-16-12
3-16-13
3-16-14
3-16-15
3-16-16
3-16-17
3-16-18

3-17-1
3-17-2
3-17-3
3-17-4
3-17-5
3-17-6
3-17-7
3-17-8
3-17-9
3-17-10

3-18-1
3-18-2
3-18-3
3-18-4
3-18-5
3-18-6
3-18-7

STACK DATA OVERWRITE: SWRIT(640).

STACK DATA INSERT: SINS(641)............
STACK DATA DELETE: SDEL(642)
Data Control Instructions
PID CONTROL: PID(190).

PID CONTROL WITH AUTOTUNING: PIDAT(191)

LIMIT CONTROL: LMT(680)
DEAD BAND CONTROL: BAND(681)........
DEAD ZONE CONTROL: ZONE(682)
TIME-PROPORTIONAL OUTPUT: TPO(685) ..
SCALING: SCL(194).o
SCALING 2: SCL2(486)ot
SCALING 3: SCL3(487) . ..o oot
AVERAGE: AVG(195).t
Subroutines
SUBROUTINE CALL: SBS(091)
MACRO: MCRO(099) ...
SUBROUTINE ENTRY: SBN(092)............
SUBROUTINE RETURN: RET(093)
GLOBAL SUBROUTINE CALL: GSBS(750) . ..
GLOBAL SUBROUTINE ENTRY: GSBN(751). .

GLOBAL SUBROUTINE RETURN: GRET(752)

553
555
557
558
560
562
563
567
567
570
573
575
578
580
582
584
586
588
591
594
597
600
603
606
609
612
615
615
627
637
639
642
644
652
656
660
664
668
668
674
678
680
681
688
691

3-19 Interrupt Control Instructions
SET INTERRUPT MASK: MSKS(690)
READ INTERRUPT MASK: MSKR(692)

3-19-1
3-19-2
3-19-3
3-19-4
3-19-5

CLEAR INTERRUPT: CLI(691).
DISABLE INTERRUPTS: DI(693). . .
ENABLE INTERRUPTS: EI(694). . ..

3-20 High-speed Counter/Pulse Output Instructions. .

3-21

3-22

3-23

3-24

3-20-1
3-20-2
3-20-3
3-20-4
3-20-5
3-20-6
3-20-7
3-20-8
3-20-9

MODE CONTROL: INI(880)

HIGH-SPEED COUNTER PV READ: PRV(881)..............
COUNTER FREQUENCY CONVERT: PRV2(883)............
REGISTER COMPARISON TABLE: CTBL(882)

SPEED OUTPUT: SPED(885).
SET PULSES: PULS(886)..........
PULSE OUTPUT: PLS2(887)

ACCELERATION CONTROL: ACC(888)

ORIGIN SEARCH: ORG(889)

3-20-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891).......
Step Instructions L.
STEP DEFINE and STEP START: STEP(008)/SNXT(009)

Basic I/O Unit Instructions

3-21-1

3-22-1
3-22-2
3-22-3
3-22-4
3-22-5
3-22-6
3-22-7
3-22-8
3-22-9

3-23-1
3-23-2
3-23-3
3-23-4
3-23-5

3-23-6
3-23-7

3-24-1
3-24-2
3-24-3
3-24-4
3-24-5

I/O REFRESH: IORF(097).
7-SEGMENT DECODER: SDEC(078)

DIGITAL SWITCH INPUT —-DSW(210)t

TEN KEY INPUT - TKY(211)

HEXADECIMAL KEY INPUT —HKY(212)

MATRIX INPUT: MTR(213)........

7-SEGMENT DISPLAY OUTPUT - 7SEG(214)
INTELLIGENT I/O READ: IORD(222)
INTELLIGENT I/O WRITE: IOWR(223)....................
3-22-10 CPU BUS UNIT I/O REFRESH: DLNK(226)

Serial Communications Instructions.

Serial Communications.
PROTOCOL MACRO: PMCR(260) ..
TRANSMIT: TXD(236)............
RECEIVE: RXD(235)

TRANSMIT VIA SERTIAL COMMUNICATIONS UNIT:

TXDU@256).coovviiii it

RECEIVE VIA SERTAL COMMUNICATIONS UNIT: RXDU(255)

CHANGE SERIAL PORT SETUP: STUP(237)

Network Instructions.

About Network Instructions

About Explicit Message Instructions (CP1IHOnly).............

NETWORK SEND: SEND(090)
NETWORK RECEIVE: RECV(098). .
DELIVER COMMAND: CMND(490)

692
692
696
699
702
703
705
705
709
715
719
723
728
731
739
745
749
751
752
769
769
772
775
779
782
786
790
794
797
800
805
805
806
815
820

825
833
841
844
844
859
864
870
876

83

84

3-25

3-26

3-27

3-28

3-29

3-24-6
3-24-7
3-24-8
3-24-9

EXPLICIT MESSAGE SEND: EXPLT(720)
EXPLICIT GET ATTRIBUTE: EGATR(721)
EXPLICIT SET ATTRIBUTE: ESATR(722)
EXPLICIT WORD READ: ECHRD(723)

3-24-10 EXPLICIT WORD WRITE: ECHWR(724)...................

Display InStructions.ttt e

3-25-1
3-25-2
3-25-3

DISPLAY MESSAGE: MSG(046)t
SEVEN-SEGMENT LED WORD DATA DISPLAY: SCH(047). . .
SEVEN-SEGMENT LED CONTROL: SCTRL(048)

Clock INStIrUCtIONS . . o oo e e e e e

3-26-1
3-26-2
3-26-3
3-26-4
3-26-5

CALENDAR ADD: CADD(730)o
CALENDAR SUBTRACT: CSUB(731)
HOURS TO SECONDS: SEC(065),
SECONDS TO HOURS: HMS(066)coooiiin....
CLOCK ADJUSTMENT: DATE(735)

Debugging InStructionsvt it e

3-27-1

Trace Memory Sampling: TRSM(045).

Failure Diagnosis Instructions.

3-28-1
3-28-2
3-28-3

FAILURE ALARM: FAL(006).o
SEVERE FAILURE ALARM: FALS(007)
FAILURE POINT DETECTION: FPD(269)

Other InStructionst

3-29-1
3-29-2
3-29-3
3-29-4
3-29-5
3-29-6
3-29-7

SET CARRY: STC(040)
CLEAR CARRY: CLC(041).
EXTEND MAXIMUM CYCLE TIME: WDT(094)
SAVE CONDITION FLAGS: CCS(282)t
LOAD CONDITION FLAGS: CCL(283).coviiin.
CONVERT ADDRESS FROM CV: FRMCV(284)
CONVERT ADDRESS TO CV: TOCV(285).............. ...

3-30 Block Programming Instructions.,

3-30-1
3-30-2
3-30-3
3-30-4
3-30-5
3-30-6
3-30-7
3-30-8
3-30-9

Introduction.t
BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812) .
Branching: IF(802), ELSE(803), and IEND(804).
CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT. .
TIMER WAIT: TIMW(813) and TIMWX(816)
COUNTER WAIT: CNTW(814) and CNTWX(818)
HIGH-SPEED TIMER WAIT: TMHW((815) and TMHWX(817) . .

3-30-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT
3-31 Text String Processing Instructions,

3-31-1
3-31-2
3-31-3
3-31-4

Text String Processing Overview
MOV STRING: MOVS(664)ovviiii i
CONCATENATE STRING: +$(656)covviiiiinn..
GET STRING LEFT: LEFT$(652).o oooi it

883
890
897
903
907
911
911
913
915
918
918
921
924
927
929
932
932
936
936
944
951
961
961
961
962
964
966
967
971
975
975
979
982
984
988
991
995
998
1001
1004
1008
1008
1009
1011
1013

3-32

3-33

3-31-5
3-31-6
3-31-7
3-31-8
3-31-9

3-32-1
3-32-2

GET STRING RIGHT: RGHT$(653

)

GET STRING MIDDLE: MID$(654). . ..« cvvoeeeaa et

FIND IN STRING: FIND$(660). . .
STRING LENGTH: LEN$(650). . .

REPLACE IN STRING: RPLC$(661)o,
3-31-10 DELETE STRING: DEL$(658) . . .
3-31-11 EXCHANGE STRING: XCHGS$(665) . ..« oooeeeiiin e
3-31-12 CLEAR STRING: CLR$(666)
3-31-13 INSERT INTO STRING: INS$(657)o
3-31-14 String Comparison Instructions (670 to 675)
Task Control Instructions.

TASK ON: TKON(820)
TASK OFF: TKOF(821)

Model Conversion Instructions

3-33-1
3-33-2
3-33-3
3-33-4
3-33-5
3-33-6

BLOCK TRANSFER: XFERC(565)

SINGLE WORD DISTRIBUTE: DISTC(566).

DATA COLLECT: COLLC(567) ..
MOVE BIT: MOVBC(568).
BIT COUNTER: BCNTC(621) ...
GET VARIABLE ID: GETID(286)

1016
1018
1020
1022
1024
1026
1029
1030
1032
1035
1040
1040
1043
1047
1049
1051
1054
1059
1061
1062

85

Notation and Layout of Instruction Descriptions

Section 3-1

3-1

Notation and Layout of Instruction Descriptions

Instructions are described in groups by function. Refer to Appendix C Alpha-
betical List of Instructions by Mnemonic for a list of instructions by mnemonic
that lists the page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item

Contents

Name and Mnemonic

The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose

The basic purpose of the instruction is described after the section heading.

Ladder Symbol and Operand

The ladder symbol used to represent the instruction on the CX-Programmer is

Names shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.
— | MOVB(082)
S S: Source word or data
C C: Control word
D D: Destination word
Variations Variations The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”
* Executed Each Cycle for ON Condition: The instruction is executed as long as it
receives an ON execution condition.
* Executed Once for Upward Differentiation: The instruction is executed during the
next cycle only after the execution condition changes from OFF to ON.
» Executed Once for Downward Differentiation: The instruction is executed during the
next cycle only after the execution condition changes from ON to OFF.
» Always Executed: The instruction does not require an execution condition and is
executed each cycle.
* Creates ON Condition....: The instruction is executed each cycle to create an execu-
tion condition for the next instruction.
Variations Executed Each Cycle for ON Condition | MOVB(082)
Variations Variations Executed Once for Upward Differentia- | @ MOVB(082)
tion
Executed Once for Downward Differenti- | Not supported
ation
Immediate Immediate refreshing can be specified for some instructions to refresh 1/0 when the
Refreshing instruction is executed. If immediate refreshing is supported, the specification is
Specification given using the mnemonic form. If immediate refreshing is not support by an instruc-
tion “Not supported” is given.
| Immediate Refreshing Specification | Not supported. |

Applicable Program Areas

The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program Subroutines

areas
OK

Step program
areas

OK

Interrupt tasks

OK OK

86

Notation and Layout of Instruction Descriptions

Section 3-1

Item

Contents

Operands

Where necessary, the meaning of words and bits used in specific operands, such as
control words, is given.

15 8 7 0
clL_m | n |

Source bit: 00 to OF

(0 to 15 decimal)

Destination bit: 00 to OF
(0 to 15 decimal)

Operand Specifications

The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---” is used to indicate when an area can-
not be specific for an operand.

Area S C D
CIO Area ClIO 0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area AO to A959 A448 to A959
Timer Area TO00O to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Description The function of the instruction and the operands used in the instruction are
described.
Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.
Name Label Operation
Error Flag ER ON if control data is within ranges.
OFF in all other cases.
Equals Flag = OFF
Negative Flag N OFF
Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.
Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.
Constants Constants input for operands are given as listed below.

Operand Descriptions and Operand Specifications

* Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOQOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

* Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

87

Notation and Layout of Instruction Descriptions

Section 3-1

Note

Condition Flags

Precautions for DM
Area Addresses in
CP1L L CPU Units

88

* Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 1023” is given
for the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal for with an & prefix,
as shown in the following example.

—— xFeR
810

D100
D200

The input methods for constants for the CX-Programmer are given in the fol-
lowing table.

Operand
Operands specifying bit strings (normally
input as hexadecimal)

Operands specifying numeric values
(normally input as decimal)

Operands specifying control numbers
(except for jump numbers)

CX-Programmer

Input as decimal with an & prefix or input
as hexadecimal with an # prefix. (See
note.)

Input as decimal with an # prefix. (See
note.)

When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Flag names are used for condition flags in this section. With the CX-Program-
mer, the condition flags are registered in advance as global symbols.

Flag name CX-Programmer label
(Used in this section.)

Error Flag P_ER
Access Error Flag P_AER
Carry Flag P_CY
Greater Than Flag P_GT
Equals Flag P_EQ
Less Than Flag P_LT
Negative Flag P_N
Overflow Flag P_OF
Underflow Flag P_UF
Greater Than or Equals Flag P_GE
Not Equal Flag P_NE
Less Than or Equals Flag P_LE
Always ON Flag P_On
Always OFF Flag P_Off

The DM Area is smaller in the CP1L L CPU Units, in comparison to the other
CP-series CPU Units. The operand specifications listed in this Programming
Manual are for CP1H and CP1L M (30 or 40-1/O point) CPU Units, so the
entire listed DM Area address ranges may not be usable in the CP1L L (14 or
20 1/0O point) CPU Units.

When programming with the CX-Programmer, out-of-range DM Area
addresses cannot be specified. In addition, if an invalid DM Area is set in the
program, an error will occur when the program is transferred to the PLC.

Sequence Input Instructions

Section 3-2

The following table shows example DM Area ranges in the CP1L L CPU Units.

CP1H and CP1L M CPU Units

DM Area

D00000 to D32767

Indirect DM addresses in
binary

@D00000 to @D32767

Indirect DM addresses in
BCD

*D00000 to *D32767

—

CP1L L CPU Units

DM Area

D00000 to D09999Y,
D32000 to D32767

Indirect DM addresses in
binary

@D00000 to @D09999,
@D30000 to @D32767

Indirect DM addresses in

*D00000 to *D09999,

BCD *D30000 to *D32767

3-2 Sequence Input Instructions

3-2-1

Purpose

Ladder Symbol

Variations

LOAD: LD

Indicates a logical start and creates an ON/OFF execution condition based on

the ON/OFF status of the specified operand bit.

Bus bar Starting point of block

- -

Applicable Program Areas

Operand Specifications

Variations | Restarts Logic and Creates ON Each Cycle LD
Operand Bit is ON
Restarts Logic and Creates ON Once for @LD
Upward Differentiation
Restarts Logic and Creates ON Once for %LD
Downward Differentiation
Immediate Refreshing Specification ILD
Combined | Refreshes Input Bit, Restarts Logic, and '@LD
Variations | Creates ON Once for Upward Differentiation
Refreshes Input Bit, Restarts Logic, and 1%LD
Creates ON Once for Downward Differentiation
Block program areas | Step program areas Subroutines | Interrupt tasks
OK OK OK OK

Area

LD operand bit

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

AO0.00 to A959.15

Timer Area TO000 to T4095
Counter Area C0000 to C4095
Task Flag Area TKOO to TK31

Condition Flags

ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, AO

Clock Pulses 0.02s,0.1s,0.2s,15s,1min
TR Area TRO to TR15
DM Area

89

Sequence Input Instructions

Section 3-2

Description

Flags

Precautions

90

Area LD operand bit

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing IR0 to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to 2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

IRO+(++) to ,IR15+(++)

, —(=)IRO to, —(- -)IR15

LD is used for the first normally open bit from the bus bar or for the first nor-
mally open bit of a logic block. If there is no immediate refreshing specifica-
tion, the specified bit in I/O memory is read. If there is an immediate
refreshing specification, the status of the Basic Input Unit’s input terminal is
read and used.

LD is used in the following circumstances as an instruction for indicating a log-
ical start.

* When directly connecting to the bus bar.

* When logic blocks are connected by AND LD or OR LD, i.e., at the begin-
ning of a logic block.

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a programming error
will occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur. For details, refer to 3-2-7 AND LOAD: AND LD and
3-2-8 OR LOAD: OR LD.

There are no flags affected by this instruction.

Differentiate up (@) or differentiate down (%) can be specified for LD. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for LD. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For LD, it is possible to combine immediate refreshing and up or down differ-
entiation (1@ or 1%). If either of these is specified, the built-in input is
refreshed from the CPU Unit just before the instruction is executed and the
execution condition is turned ON for one cycle only after the status goes from
OFF to ON, or from ON to OFF.

Sequence Input Instructions Section 3-2
Example
LD / LD
o i '___-_'_'____}/LD
L 002 | 003
———|
| 004
A
\LD NOTO'O5
Instruction Operand
LD ocoo | =
LD 0.01 T oRLDp |+ANDLD
LD 0.02
AND 0.03 ORLD
ORLD ---
AND LD P
LD NOT 0.04 j """"""""""""""""
AND 0.05 J
ORLD ---
ouT 100.00

3-2-2 LOAD NOT: LD NOT

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Indicates a logical start and creates an ON/OFF execution condition based on
the reverse of the ON/OFF status of the specified operand bit.

Bus bar Starting point of block
Variations | Restarts Logic and Creates ON Each Cycle Operand |LD NOT
Bit is OFF
Restarts Logic and Creates ON Once for Upward @LD NOT
Differentiation
Restarts Logic and Creates ON Once for Downward | %LD NOT
Differentiation
Immediate Refreshing Specification ILD NOT
Combined | Refreshes Input Bit, Restarts Logic, and Creates ON |!@LD NOT
Variations | Once for Upward Differentiation
Refreshes Input Bit, Restarts Logic, and Creates ON |!%LD NOT
Once for Downward Differentiation

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK OK

OK

OK

91

Sequence Input Instructions

Section 3-2

Operand Specifications

Area

LD NOT bit operand

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area TO0O00 to T4095
Counter Area C0000 to C4095
Task Flag Area TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses

0.02s,0.1s5,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JJRO+(++) to ,IR15+(++)

,—(=-)IRO to, —(— -)IR15

Description

LD NOT is used for the first normally closed bit from the bus bar, or for the first

normally closed bit of a logic block. If there is no immediate refreshing specifi-
cation, the specified bit in I/O memory is read and reversed. If there is an
immediate refreshing specification, the status of the Basic Input Unit’s input
terminal is read, reversed, and used.

LD NOT is used in the following circumstances as an instruction for indicating

a logical start.

* When directly connecting to the bus bar.

* When logic blocks are connected by AND LD or OR LD. (Used at the
beginning of a logic block.)

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a program error will
occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-

ming error will occur.
Flags

Precautions

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for LD NOT. An immediate refresh

instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

92

Sequence Input Instructions Section 3-2
Example
LD / LD
| 000! 001 | 100,00
o “.--f I _____ E/LD
' 002 | 003
! 11 L Il
L
| 004
! Ja 1
HeSi oos
“lowor
Instruction Operand | T 7
"""" AND LD
LD 0.00 ORLD
LD 0.01
LD 0.02 ORLD
AND 0.03
ORLD I
AND LD e
LD NOT 0.04
AND 0.05
OR LD -
ouT 100.00

3-2-3 AND: AND

Purpose

Ladder Symbol

Variations

Takes a logical AND of the status of the specified operand bit and the current
execution condition.

— b

Variations |Creates ON Each Cycle AND Result is ON AND
Creates ON Once for Upward Differentiation @AND
Creates ON Once for Downward Differentiation | %AND
Immediate Refreshing Specification IAND
Combined |Refreshes Input Bit and Creates ON Once for !1@AND
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 1%AND
Downward Differentiation

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

93

Sequence Input Instructions

Section 3-2

Operand Specifications

Area

AND bit operand

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area

TO000 to T4095

Counter Area

C0000 to C4095

Task Flag Area

TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses

0.02s,0.1s5,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JJRO+(++) to ,IR15+(++)

,—(=-)IRO to, —(— -)IR15

Description

AND is used for a normally open bit connected in series. AND cannot be

directly connected to the bus bar, and cannot be used at the beginning of a
logic block. If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

Flags

Precautions

There are no flags affected by this instruction.

Differentiate up (@) or differentiate down (%) can be specified for AND. If dif-

ferentiate up (@) is specified, the execution condition is turned ON for one
cycle only after the status of the operand bit goes from OFF to ON. If differen-
tiate down (%) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for AND. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For AND, it is possible to combine immediate refreshing and up or down differ-
entiation (1@ or !%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status goes from OFF to ON, or

from ON to OFF.

94

Sequence Input Instructions

Section 3-2

Example

/AND / AND
000 | 001 002 | 003 ! :
———r—————0
004 | 005
W
AN AND NOT
Instruction Operand
LD 0.00
AND 0.01
LD 0.02
AND 0.03
LD 0.04
AND NOT 0.05
OR LD ---
AND LD -
ouT 100.00

3-2-4 AND NOT: AND NOT

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Reverses the status of the specified operand bit and takes a logical AND with
the current execution condition.

-

Variations |Creates ON Each Cycle AND NOT Result is ON AND NOT
Creates ON Once for Upward Differentiation @AND NOT
Creates ON Once for Downward Differentiation %AND NOT
Immediate Refreshing Specification !AND NOT
Combined |Refreshes Input Bit and Creates ON Once for !@AND NOT
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 1%AND NOT
Downward Differentiation

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Area AND NOT bit operand
ClO Area ClO 0.00 to CIO 6143.15
Work Area WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

AO0.00 to A959.15

Timer Area TO0O0O0 to T4095
Counter Area C0000 to C4095
Task Flag Area TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF, AER

95

Sequence Input Instructions

Section 3-2

Description

Flags

Precautions

Example

96

Area

AND NOT bit operand

Clock Pulses

0.02s,0.1s5,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses | ---
in BCD

Constants

Data Registers

Index Registers

,IR0 to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

Indirect addressing
using Index Registers

~(=-)IRO to, —(— -)IR15

AND NOT is used for a normally closed bit connected in series. AND NOT
cannot be directly connected to the bus bar, and cannot be used at the begin-
ning of a logic block. If there is no immediate refreshing specification, the
specified bit in I/O memory is read. If there is an immediate refreshing specifi-
cation, the status the CPU Unit’s input terminals is read.

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for AND NOT. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

000 | 001 : 002 | 003 | 100,00
————————0
004 | 005
W
AN AND NOT
Instruction Operand
LD 0.00
AND 0.01
LD 0.02
AND 0.03
LD 0.04
AND NOT 0.05
ORLD ---
AND LD ---
ouT 100.00

Sequence Input Instructions

Section 3-2

3-2-5 OR: OR

Purpose Takes a logical OR of the ON/OFF status of the specified operand bit and the
current execution condition.
Ladder Symbol
Bus bar
Variations
Variations |Creates ON Each Cycle OR Result is ON OR
Creates ON Once for Upward Differentiation @OR
Creates ON Once for Downward Differentiation | %OR
Immediate Refreshing Specification IOR
Combined |Refreshes Input Bit and Creates ON Once for !1@0OR
Variations | Upward Differentiation
Refreshes Input Bit and Creates ON Once for 1%0R
Downward Differentiation

Applicable Program Areas

Block program areas

Step program areas Subroutines | Interrupt tasks

OK

OK OK OK

Operand Specifications

Area

OR bit operand

ClO Area

ClO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A0.00 to A959.15

Timer Area TO0O0O0 to T4095
Counter Area C0000 to C4095
Task Flag Area TKOO to TK31

Condition Flags

ER, CY, N, OF UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses

0.02s,0.1s5,0.2s,15s,1min

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

,—(=-)IRO to, —(— -)IR15

97

Sequence Input Instructions

Section 3-2

Description

Flags

Precautions

Example

OR is used for a normally open bit connected in parallel. A normally open bit
is configured to form a logical OR with a logic block beginning with a LOAD or
LOAD NOT instruction (connected to the bus bar or at the beginning of the
logic block). If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

There are no flags affected by this instruction.

Differentiate up (@) or differentiate down (%) can be specified for OR. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for OR. An immediate refresh
instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

For OR, it is possible to combine immediate refreshing and up or down differ-
entiation (1@ or !%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status of the operand bit goes
from OFF to ON, or from ON to OFF.

000 001 002 004 005 006 10000
| —— Al b b A)
1003 T i | o07 T 5
L | . — :
\ OR \ OR NOT
Instruction Operand
LD 0.00
AND 0.01
AND 0.02
OR 0.03
AND 0.04
LD 0.05
AND 0.06
OR NOT 0.07
AND LD -
ouT 100.00

3-2-6 OR NOT: OR NOT

Purpose

Ladder Symbol

98

Reverses the status of the specified bit and takes a logical OR with the current
execution condition.

]

Bus bar

Sequence Input Instructions

Section 3-2

Variations

Applicable Program Areas

Operand Specifications

Description

Flags

Precautions

Variations Creates ON Each Cycle OR NOT Result is ON OR NOT
Creates ON Once for Upward Differentiation @OR NOT
Creates ON Once for Downward Differentiation %0OR NOT
Immediate Refreshing Specification IOR NOT
Combined |Refreshes Input Bit and Creates ON Once for 1@0OR NOT
Variations Upward Differentiation
Refreshes Input Bit and Creates ON Once for 1%0R NOT
Downward Differentiation

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK

OK OK OK

Area

OR NOT bit operand

ClO Area

ClO 0.00 to CIO 6143.15

Work Area

WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

AO0.00 to A959.15

Timer Area TO0O0O0 to T4095
Counter Area C0000 to C4095
Task Flag Area TKOO to TK31

Condition Flags

ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, AO

Clock Pulses

0.02s,0.1s5,0.2s,15s,1min

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IRO to ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

,—(—-)IR0 to, -(— -)IR15

OR NOT is used for a normally closed bit connected in parallel. A normally
closed bit is configured to form a logical OR with a logic block beginning with a
LOAD or LOAD NOT instruction (connected to the bus bar or at the beginning
of the logic block). If there is no immediate refreshing specification, the speci-
fied bit in I/O memory is read. If there is an immediate refreshing specification,
the status of the CPU Unit’s input terminal is read.

There are no flags affected by this instruction.

Immediate refresh () can be specified for OR NOT. An immediate refresh
instruction updates the status of the input bit from a CPU Unit built-in input
just before the instruction is executed.

99

Sequence Input Instructions Section 3-2
Example
100.00
o.lo'o 0.|(|)1 0.32 ol.(|)4 0.|(|>5 O'.P6 O
T H H [[(]

X i | ooz :

: 1l) ' X :

o L H A :

N OR "\ oRNoT
Instruction Operand

LD 0.00

AND 0.01

AND 0.02

OR 0.03

AND 0.04

LD 0.05

AND 0.06

OR NOT 0.07

AND LD

ouT 100.00
3-2-7 AND LOAD: AND LD
Purpose Takes a logical AND between logic blocks.
Ladder Symbol

Logic block — Logic block

Variations

Variations | Creates ON Each Cycle AND Result is ON AND LD

Immediate Refreshing Specification Not supported.

Applicable Program Areas

Description

100

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

AND LD connects in series the logic block just before this instruction with

another logic block.

LD
to Logic block A
LD i
to Logic block B
/
AND LD ------ Serial connection between logic block A and logic block B.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the

same rungs.

Sequence Input Instructions Section 3-2

In the following diagram, the two logic blocks are indicated by dotted lines.
Studying this example shows that an ON execution condition will be produced
when either of the execution conditions in the left logic block is ON (i.e., when
either CIO 0.00 or CIO 0.01 is ON) and either of the execution conditions in
the right logic block is ON (i.e., when either CIO 0.02 is ON or CIO 0.03 is

OFF).
T 500 ¢ VY ooo ¢ 100.00
ICaEL Nl
| A '] 1] '
! 001 |1 003 [
I |1 ! : V4 '
oA
Flags There are no flags affected by this instruction.
Precautions Three or more logic blocks can be connected in series using this instruction to

first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in series.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a program
error will occur.

Example

Coding Example (1)

Instruction Operand

LD 0.00

OR NOT 0.01

LD NOT 0.02

OR 0.03

AND LD

LD 0.04

OR 0.05

AND LD

ouT 100.00

Coding Example (2)

Instruction Operand
LD 0.00
OR NOT 0.01
LD NOT 0.02
OR 0.03
LD 0.04
OR 0.05

101

Sequence Input Instructions

Section 3-2

Instruction

Operand

AND LD

AND LD

ouT

100.00

The AND LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of AND LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before AND LOAD is not more than eight. To use nine or more,
program using method (1). If there are nine or more with method (2), then a
program error will occur during the program check by the CX-Programmer.

Coding
Address Instruction Operand

000000 LD 0.00

000001 OR 0.01

000002 LD 0.02

000003 OR NOT 0.03

000004 AND LD

000005 ouT 100.00

Second LD: Used for first bit of next block connected in series to previous

block.

3-2-8 ORLOAD: ORLD

Purpose

Ladder Symbol

Variations

Applicable Program Areas

102

Takes a logical OR between logic blocks.

Variations

Creates ON Each Cycle AND Result is ON

ORLD

Immediate Refreshing Specification

Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Sequence Input Instructions

Section 3-2

Description

Flags

Precautions

Example

AND LD connects in parallel the logic block just before this instruction with
another logic block.

LD
to Logic block A
LD M
to Logic block B
—
ORLD - Parallel connection between logic block A and logic block B.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be pro-
duced either when CIO 0.00 is ON and CIO 0.01 is OFF or when CIO 0.02
and CIO 0.03 are both ON. The operation of and mnemonic code for the OR
LOAD instruction is exactly the same as those for a AND LOAD instruction
except that the current execution condition is ORed with the last unused exe-
cution condition.

0.00 0.01 100.00
|1 LL
1 Al

| 002 003 |

i I 11 '

! 11 11 '

There are no flags affected by this instruction.

Three or more logic blocks can be connected in parallel using this instruction
to first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in parallel.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur.

0.00 0.01 100.00
1l Y4
A Al
0.02 0.03
I ¥i
Al Al
0.04 0.05
|1 |1
11 A
Coding Example (1)
Instruction Operand
LD 0.00
AND NOT 0.01
LD NOT 0.02
AND NOT 0.03
ORLD

103

Sequence Input Instructions

Section 3-2

104

Instruction Operand
LD 0.04
AND 0.05
OR LD
ouT 100.00
Coding Example (2)
Instruction Operand
LD 0.00
AND NOT 0.01
LD NOT 0.02
AND NOT 0.03
LD 0.04
AND 0.05
OR LD
OR LD
ouT 100.00

The OR LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of OR LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before OR LOAD is not more than eight. To use nine or more, pro-
gram using method (1). If there are nine or more with method (2), then a pro-
gram error will occur during the program check by the CX-Programmer.

Coding
Address Instruction Operand
000100 LD 0.00
000101 AND NOT 0.01
000102 LD 0.02
000103 AND 0.03
000104 ORLD
000105 ouT 100.00

Second LD: Used for first bit of next block connected in series to previous

block.

Sequence Input Instructions

Section 3-2

3-2-9 Differentiated and Immediate Refreshing Instructions

The LOAD, AND, and OR instructions have differentiated and immediate
refreshing variations in addition to their ordinary forms, and there are also two
combinations available.

The LOAD NOT, AND NOT, OR NOT, OUT, and OUT NOT instructions have
immediate refreshing variations in addition to their ordinary forms.

The 1/O timing for data handled by instructions differs for ordinary and differ-
entiated instructions, immediate refreshing instructions, and immediate
refreshing differentiated instructions.

Ordinary and differentiated instructions are executed using data input by pre-
vious 1I/O refresh processing, and the results are output with the next 1/0 pro-
cessing. Here “I/O refreshing” means the data exchanged between the CPU’s
internal memory and CPU Unit built-in 1/0, CPM1A Expansion Units, and
CPM1A Expansion I/O Units.

In addition to the above I/O refreshing, an immediate refresh instruction
exchanges data with the I/O Unit for those words that are accessed by the
instruction. An immediate refresh instruction refreshes all of the bits in the

word containing the specified bit.

Instruction variation

Mnemonic

Function

I/0 refresh

Ordinary

LD, AND, OR, LD NOT,
AND NOT, OR NOT

The ON/OFF status of the specified bit
is taken by the CPU with cyclic refresh-
ing, and it is reflected in the next instruc-
tion execution.

OUT, OUT NOT

After the instruction is executed, the ON/
OFF status of the specified bit is output
with the next cyclic refreshing.

Differentiated up

@LD, @AND, @OR

The instruction is executed once when
the specified bit turns from OFF to ON
and the ON state is held for one cycle.

Differentiated down

%LD, %AND, %OR

The instruction is executed once when
the specified bit turns from ON to OFF
and the ON state is held for one cycle.

Cyclic refreshing

Immediate refresh

ILD, !AND, !OR, LD NOT,
IAND NOT, !OR NOT

The input data for the specified bit is
taken by the CPU and the instruction is
executed.

Before instruction execu-
tion

IOUT, !IOUT NOT

After the instruction is executed, the
data for the specified bit is output.

After instruction execution

Differentiated up /
immediate refresh

!@LD, |@AND, !|@OR

The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from OFF to ON and the ON state is
held for one cycle.

Differentiated down /
immediate refresh

1%LD, 1%AND, 1%0R

The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from ON to OFF and the ON state is
held for one cycle.

Before instruction execu-
tion

Note

Immediate refresh instructions (i.e., instructions with !) can be used only for

built-in 1/0 on the CPU Unit. They cannot be used for I/O on CPM1A Expan-
sion Units or CPM1A Expansion I/O Units. Use IORF(097) for /O on CPM1A
Expansion Units or CPM1A Expansion I/O Units.

105

Section 3-2

The following chart shows the differences in the timing of instruction opera-

tions for a program configured from LD and OUT.

3-2-10 Operation Timing for I/O Instructions

Sequence Input Instructions

received

Input
received

"o T sl T ° T
] W R 2
s 53 e
ko) o QO
el ¢ o 9] ce
- I R (il Mo S S N
>0)
[eNS] [N &)
CO|f-Cc Oq------f~---"-=--"--f{~----—f~"--—q~=----1--—----|-- |
cd RO il E i I e R I E BN 22000
(o))
(= — [V} c
- o] < [fs] © N~ ©)] - - - ‘D
< m om om om om om om m m [an] m m on
(0]
28
Oos

5
%
%
@
%
%

T T T T T T < T D —x T T

I/O refreshing

Instruction execution

106

Sequence Input Instructions Section 3-2

3-2-11 TR Bits

TR bits are used to temporarily retain the ON/OFF status of execution condi-
tions in a program when programming in mnemonic code. They are not used
when programming directly in ladder program form because the processing is
automatically executed by the CX-Programmer. The following diagram shows
a simple application using two TR bits.

0.00 @ 0.01 @ 0.02 100.00 Address | Instruction |Operands

1 I} /) 00200 | LD 0.00
0.03 100.01 00201 | OUT TRO
I O 00202 [AND 0.01
Y 00203 | ouT TR1
004 100,02 00204 | AND 0.02

1T O 00205 | OUT 100.00
0.05 100.03 00206 | LD TR1
F O 00207_| AND 0.03

00208 | OUT 100.01
00209 | LD TRO
00210 | AND 0.04

00211 | OUT 100.02
00212 | LD TRO
00213 | ANDNOT | 0.05

00214 | OUT 100.03

Using TRO to TR15 TRO to TR15 are used only with LOAD and OUTPUT instructions. There are

no restrictions on the order in which the bit addresses are used.

Sometimes it is possible to simplify a program by rewriting it so that TR bits
are not required. The following diagram shows one case in which a TR bit is
unnecessary and one in which a TR bit is required.

100.00
000 4 _
!

0.01 100.01 (1)
|
f

In instruction block (1), the ON/OFF status at point A is the same as for output
CIO 100.00, so AND 0.01 and OUT 100.01 can be coded without requiring a
TR bit. In instruction block (2), the status of the branching point and that of
output CIO 100.02 are not necessarily the same, so a TR bit must be used. In
this case, the number of steps in the program could be reduced by using
instruction block (1) in place of instruction block (2).

TRO to TR15 TR bits are used only for retaining (OUT TRO to TR15) and restoring (LD TRO

Considerations to TR15) the ON/OFF status of branching points in programs with many out-
put branches. They are thus different from general bits, and cannot be used
with AND or OR instructions, or with instructions that include NOT.

107

Sequence Input Instructions Section 3-2

TRO to TR15 output A TR bit address cannot be repeated within the same block in a program with
Duplication many output branches, as shown in the following diagram. It can, however, be
used again in a different block.

0.90 0”01
f 11

1.0
T O
\S]
-
o
o
o
o

4O
T o
w
-
o
o
o
=

o
T o
N
-
o
o
o
\S]

O

to

110.00
0.10 ‘ 0.11 ‘ _0.12
]| @ | | @ ||
11 11 11
0.13 110.01
|1
[

1 O
-
~
-
"
o
o
N

Lo
Y
[¢;]
-
T-o
o
—_
—_
o
o
w

-
T-O
=

-

"

o

o

g

O

3-2-12 NOT: NOT(520)

Purpose Reverses the execution condition.
Ladder Symbol

— NOT(520) [——
Variations

Variations | Reverses the Execution Condition Each Cycle NOT(520)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK
Description NOT(520) is placed between an execution condition and another instruction to
invert the execution condition.
Flags There are no flags affected by NOT(520)
Precautions NOT(520) is an intermediate instruction, i.e., it cannot be used as a right-hand
instruction. Be sure to program a right-hand instruction after NOT(520).
Example NOT(520) reverses the execution condition in the following example.
0.00 0.01 100.00
Il Il NOT
0.02
]1
1

108

Sequence Input Instructions Section 3-2
The following table shows the operation of this program section.
Input bit status Output bit status
Cl0 0.00 ClO 0.01 ClO 0.02 Cl0 0.03

o|lo|o|=|o|=|-]=-
o|lo|=|o|l=|lo|-|=-
o|=|o|lo|l=|=|ol=
alalala|lo|=|o|o

3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Description

Flags

Precautions

UP(521) turns ON the execution condition for the next instruction for one cycle
when the execution condition it receives goes from OFF to ON. DOWN(522)
turns ON the execution condition for the next instruction for one cycle when
the execution condition it receives goes from ON to OFF.

- | UP®21) [

— | DOWN(522) [

Variations |Creates ON Once for Upward Differentiation UP(521)
Immediate Refreshing Specification Not supported
Variations | Creates ON Once for Downward Differentiation UP(522)
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks
OK OK OK OK

UP(521) is placed between an execution condition and another instruction to
turn the execution condition into an up-differentiated condition. UP(521)
causes the connecting instruction to be executed just once when the execu-
tion condition goes from OFF to ON.

DOWN(522) is placed between an execution condition and another instruction
to turn the execution condition into a down-differentiated condition.
DOWN(522) causes the connecting instruction to be executed just once when
the execution condition goes from ON to OFF.

The DIFU(013) and DIFD(014) instructions can also be used for the same
purpose, but they require work bits. UP(521) and DOWN(522) simplify pro-
gramming by reducing the number of work bits and program addresses
needed.

There are no flags affected by UP(521) and DOWN(522).

UP(521) and DOWN(522) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after UP(521) or DOWN(522).

109

Sequence Input Instructions Section 3-2

Examples

0.00

o

The operation of UP(521) and DOWN(522) depends on the execution condi-
tion for the instruction as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped
program section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTER-
LOCK CLEAR: IL(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004)
and JME(005), and 3-19 Interrupt Control Instructions for details.

When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for just one cycle.

100.00

O

Cycle
time

When CIO 0.00 goes from ON to OFF in the following example, CIO 100.01 is
turned ON for just one cycle.

100.01

O
0.00 ‘ l

100.01 E []

3-2-14 BIT TEST: TST(350) and TSTN(351)

Purpose

Ladder Symbols

110

LD TST(350), AND TST(350), and OR TST(350) are used in the program like
LD, AND, and OR; the execution condition is ON when the specified bit in the
specified word is ON, and OFF when the bit is OFF.

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the program
like LD NOT, AND NOT, and OR NOT; the execution condition is OFF when
the specified bit in the specified word is ON, and ON when the bit is OFF.

— | TST(350) [
S S: Source word
N N: Bit number
— | TSTN(351) [
S S: Source word
N N: Bit number

Sequence Input Instructions

Section 3-2

Variations

Applicable Program Areas

Operands

Operand Specifications

Description

Flags

Variations | Executed Each Cycle TST(350)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle TSTN(351)
Immediate Refreshing Specification Not supported

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

N: Bit number

The bit number must be between 0000 and 000F hexadecimal or between
&0000 and &0015 decimal. Only the rightmost bit (0 to F hexadecimal) of the
contents of the word is valid when a word address is specified.

Area S | N
CIO Area ClIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in | @ DO to @ D32767
binary

Indirect DM addresses in

*DO0 to *D32767

BCD

Constants #0000 to #000F (binary) or
&0 to &15

Data Registers DRO to DR15

Index Registers

Indirect addressing using |,IRO to ,IR15

Index Registers —2048 to +2047 , IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

~(=-)IR0 to, —(— -)IR15

LD TST(350), AND TST(350), and OR TST(350) can be used in the program
like LD, AND, and OR,; the execution condition is ON when the specified bit in
the specified word is ON and OFF when the bit is OFF. Unlike LD, AND, and
OR, bits in the DM area can be used as operands in TST(350).

LD TSTN(351), AND TSTN(351), and OR TSTN(351) can be used in the pro-
gram like LD NOT, AND NOT, and OR NOT,; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is OFF.
Unlike LD NOT, AND NOT, and OR NOT, bits in the DM area can be used as
operands in TSTN(351).

Name Label Operation
Error Flag ER OFF or unchanged
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

111

Sequence Input Instructions

Section 3-2

Precautions

Examples

112

TST(350) and TSTN(351) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after TST(350) or TSTN(351).

LD TST(350) and LD TSTN(351)
In the following example, CIO 100.01 is turned ON when bit 3 of D10 is ON.

100.01

TST ———)
D10
&3

In the following example, CIO 100.02 is turned ON when bit 3 of D10 is OFF.

100.02

TSTN 40
D10
&3

AND TST(350) and AND TSTN(351)

In the following example, CIO 100.01 is turned ON when CIO 0.00 and bit 3 of
D10 are both ON.

100.01

0.00
——TsT 40
D10
&3

In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON and
bit 3 of D10 is OFF.

100.02

0.01
——— TSN 40
D10
&3

OR TST(350) and OR TSTN(351)

In the following example, CIO 100.01 is turned ON when CIO 0.00 or bit 3 of
D10 is ON.

0.00 100.01
!

— TST

D10
&3

Sequence Qutput Instructions

Section 3-3

In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON or bit

3 of D10 is OFF.

100.02

0.01
11
1

— TSTN

D10
&3

3-3 Sequence Output Instructions

3-3-1 OUTPUT: OUT
Purpose Outputs the result (execution condition) of the logical processing to the speci-
fied bit.
Ladder Symbol
Variations
Variations | Executed Each Cycle for ON Condition ouT
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation Not supported.
Immediate Refreshing Specification IOUT

Applicable Program Areas

Operand Specifications

Block program areas

Step program areas | Subroutines

Interrupt tasks

Not allowed OK OK OK
Area OUT bit operand

ClO Area ClO 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

H0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

TR Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

113

Sequence Qutput Instructions

Section 3-3

Description

Flags

Precautions

Example

Area OUT bit operand
Index Registers
Indirect addressing IR0 t0 ,IR15
using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to ,IR15
JRO+(++) to ,IR15+(++)
,—(—-)IRO to, -(— -)IR15

If there is no immediate refreshing specification, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If there is
an immediate refreshing specification, the status of the execution condition
(power flow) is also written to the CPU Unit’s output terminal in addition to the
output bit in 1/O memory.

There are no flags affected by this instruction.

Immediate refreshing (!) can be specified for OUT and OUT NOT. An immedi-
ate refresh instruction updates the status of the output terminal on the CPU
Unit just after the instruction is executed at the same time as it writes the sta-
tus of the execution condition (power flow) to the specified output bit in 1/0
memory.

100.00
0.00
I O

_/
100.01

@,

Instruction Operand
LD 0.00
ouT 100.00
OUT NOT 100.01

3-3-2 OUTPUT NOT: OUT NOT

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Reverses the result (execution condition) of the logical processing, and out-
puts it to the specified bit.

Variations Executed Each Cycle for ON Condition OUT NOT
Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation | Not supported.

Immediate Refreshing Specification IOUT NOT

114

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

OK

Sequence Qutput Instructions

Section 3-3

Operand Specifications

Description

Flags

Example

Area

OUT bit operand

CIO Area

ClO 0.00 to CIO 6143.15

Work Area

W0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

TR Area

TRO to TR15

DM Area

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants

Data Registers

Index Registers

Indirect addressing using
Index Registers

,IROto ,IR15

—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to ,IR15
IRO+(++) to ,IR15+(++)
,—~(—-)IR0 to, —(— -)IR15

If there is no immediate refreshing specification, the status of the execution
condition (power flow) is reversed and written to a specified bit in I/O memory.
If there is an immediate refreshing specification, the status of the execution
condition (power flow) is reversed and also written to the CPU Unit’s output
terminal in addition to the output bit in /O memory.

There are no flags affected by this instruction.

100.00
0.00
I O

_/
100.01

%,

Instruction

Operand

LD

0.00

ouT

0.01

OUT NOT

0.02

3-3-3 KEEP: KEEP(011)

Operates as a latching relay.

Purpose

Ladder Symbol

S (Set)

— KEEP(011)

B: Bit

R (Reset) —I

115

Sequence Output Instructions Section 3-3
Variations
Variations | Executed Each Cycle for ON Condition KEEP(011)
Executed Once for Upward Differentiation Not supported
Executed Once for Downward Differentiation Not supported
Immediate Refreshing Specification IKEEP(011)

Applicable Program Areas

Operand Specifications

Description

116

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed OK OK OK
Area B

CIO Area ClO 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IROto ,IR15

—~(~-) IR0 to,

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)

—(—-)IR15

When S turns ON, the designated bit will go ON and stay ON until reset,
regardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF. The relationship between execution conditions and
KEEP(011) bit status is shown below.

P keer | —
A c _ A B
Reset
—
B c
ON
S execution condition OFF
ON
R execution condition OFF
ON
Status of C OFF

Sequence Output Instructions Section 3-3

If S and R are ON simultaneously, the reset input takes precedence.

ON

Set OFF
ON

Reset OFF

ON
Status of C off

The set input (S) cannot be received while R is ON.

ON
Set OFF

ON
Reset OFF

ON
Status of C ofFfF

KEEP(011) has an immediate refreshing variation (IKEEP(011)). When an
external output bit has been specified for B in a IKEEP(011) instruction, any
changes to B will be refreshed when IKEEP(011) is executed and reflected
immediately in the output bit for the CPU Unit built-in output.

KEEP(011) operates like the self-maintaining bit, but a self-maintaining bit
programmed with KEEP(011) requires one less instruction.

002 0.03 100,00
I

KEEP

100.00
0.03 ’7
|
|

Self-maintaining bits programmed with KEEP(011) will maintain status even in
an interlock program section, unlike the self-maintaining bit programmed with-
out KEEP(011).

TR o R Sy
KEEP —

—i—]
A c A B c
=

o o
B c

L] A e]

Output bit C will maintain its Output bit C will be turned
previous status in an interlock. OFF in an interlock.

117

Sequence Output Instructions Section 3-3

Flags

Precautions

118

KEEP(011) can be used to create flip-flops as shown below.

A
—1} v i KEEP

2 R
If a holding bit is used for B, the bit status will be retained even during a power
interruption. KEEP(011) can thus be used to program bits that will maintain
status after restarting the PLC following a power interruption. An example of
this that can be used to produce a warning display following a system shut-
down for an emergency situation is shown below.

0.02
— | KEEP

— HO0.00

0.03 Indicates
| | emergency
situation

0.04

——

0.05
I
|

Reset input

Activates
warning
display

The status of 1/0 Area bits can be retained in the event of a power interruption
by turning ON the IOM Hold Bit and setting IOM Hold Bit Hold in the PLC
Setup. In this case, I/O Area bits used in KEEP(011) will maintain status after
restarting the PLC following a power interruption, just like holding bits. Be sure
to restart the PLC after changing the PLC Setup; otherwise the new settings
will not be used.

No flags are affected by KEEP(011).

Never use an input bit in a normally closed condition on the reset (R) for
KEEP(011) when the input device uses an AC power supply. The delay in
shutting down the PLC’s DC power supply (relative to the AC power supply to
the input device) can cause the operand bit of KEEP(011) to be reset. This sit-
uation is shown below.

Input Unit

L — | KEEP

>
(@]

120000
» NEVER I_

The operands for KEEP(011) are input in a different order in ladder diagrams
and mnemonic code.

Ladder diagram order: Set input - KEEP(011) — Reset input

Mnemonic code order: Set input — Reset input —» KEEP(011)

Sequence Output Instructions Section 3-3

Example

Note

When CIO 0.00 goes ON in the following example, CIO 100.00 is turned ON.
CIO 100.00 remains ON until CIO 0.01 goes ON.

When CIO 0.02 goes ON and CIO 0.03 goes OFF in the following example,
CIO 100.01 is turned ON. CIO 100.01 remains ON until CIO 0.04 or CIO 0.05
goes ON.

0.00
I KEEP
100.00

0.01 ’7
—i

0.02 0.03
— (5 KEEP

100.01

0.04 ’7
—

0.05
——
Coding

Address Instruction Operand

000100 LD 0.00
000101 LD 0.01
000102 KEEP (011) 100.00
000103 LD 0.02
000104 AND NOT 0.03
000105 LD 0.04
000106 OR 0.05
000107 KEEP (011) 100.01

KEEP(011) is input in different orders on in ladder and mnemonic form. In lad-
der form, input the set input, KEEP(011), and then the reset input. In mne-
monic form, input the set input, the reset input, and then KEEP(011).

3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)

Purpose

Ladder Symbols

DIFU(013) turns the designated bit ON for one cycle when the execution con-
dition goes from OFF to ON (rising edge).
DIFD(014) turns the designated bit ON for one cycle when the execution con-
dition goes from ON to OFF (falling edge).

— DIFU(013)

B B: Bit
— DIFD(014)

B B: Bit

119

Sequence Qutput Instructions

Section 3-3

Variations

Applicable Program Areas

Operand Specifications

Description

120

Variations Executed Each Cycle for ON Condition Not supported
Executed Once for Upward Differentiation DIFU(013)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IDIFU(013)
Variations Executed Each Cycle for ON Condition Not supported
Executed Once for Upward Differentiation DIFD(014)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IDIFD(014)

Block program areas

Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK OK
Area B

CIO Area ClO 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants

Data Registers

Index Registers

Indirect addressing
using Index Registers

,IR0 to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—(—=-)IR0to ,15—(—-) IR

When the execution condition goes from OFF to ON, DIFU(013) turns B ON.
When DIFU(013) is reached in the next cycle, B is turned OFF.

Execution condition

Status of B

1 cycle

When the execution condition goes from ON to OFF, DIFD(014) turns B ON.
When DIFD(014) is reached in the next cycle, B is turned OFF.

Execution condition

Status of B

1 cycle

Sequence Output Instructions Section 3-3

DIFU(013) and DIFD(014) have immediate refreshing variations (IDIFU(013)
and !DIFD(014)). When an external output bit has been specified for B in one
of these instructions, any changes to B will be refreshed when the instruction
is executed and reflected immediately in the output bit for the CPU Unit built-in
output.

UP(521) and DOWN(522) can be used to execute an instruction for just one

cycle when the execution condition goes from OFF — ON or ON — OFF.
Refer to 3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) for details.

Flags No flags are affected by DIFU(013) and DIFD(014).

Precautions The operation of DIFU(013) or DIFD(014) depends on the execution condition
for the instruction itself as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped pro-
gram section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTERLOCK
CLEAR: IL(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004) and
JME(005), and 3-19 Interrupt Control Instructions for details.

If DIFU(013) is used in a FOR-NEXT loop and the loop repeats in a cycle, the
controlled bit will be always ON or always OFF within that loop.

Examples Operation of DIFU(013)

When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for one cycle.

0.00
I} DIFU
100.00 0.00 [—‘I [—1
100.00 1 [l [
1! cycle: 1! cycle :
Operation of DIFD(014)
When CIO 0.00 goes from ON to OFF in the following example, CIO 100.00 is
turned ON for one cycle.
0.00
I DIFD
100.00

0.00 l l
100.00 |] i]
A o

1 cycle 1 cycle

121

Sequence Qutput Instructions

Section 3-3

3-3-5 SET and RESET: SET and RSET

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operand Specifications

122

SET turns the operand bit ON when the execution condition is ON.
RSET turns the operand bit OFF when the execution condition is ON.

- SET
B B: Bit
- RSET
B B: Bit
Variations Executed Each Cycle for ON Condition SET
Executed Once for Upward Differentiation @SET
Executed Once for Downward Differentiation | %SET
Immediate Refreshing Specification ISET
Combined Executed Once and Bit Refreshed I@SET
variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed 1%SET
Immediately for Downward Differentiation
Variations Executed Each Cycle for ON Condition RSET
Executed Once for Upward Differentiation @RSET
Executed Once for Downward Differentiation | %RSET
Immediate Refreshing Specification IRSET
Combined Immediate Refreshing Once for Upward I@RSET
Variations Differentiation
Immediate Refreshing Once for Downward 1%RSET
Differentiation

Block program areas

Step program areas | Subroutines

Interrupt tasks

OK OK OK OK
Area B

CIO Area ClO 0.00 to CIO 6143.15

Work Area WO0.00 to W511.15

Holding Bit Area

HO0.00 to H511.15

Auxiliary Bit Area

A448.00 to A959.15

Timer Area

Counter Area

DM Area

Indirect DM addresses | ---

in binary

Indirect DM addresses | ---

in BCD

Constants

Data Registers

Sequence Output Instructions Section 3-3

Description

Flags

Precautions

Area B

Index Registers

Indirect addressing IR0 t0 ,IR15

using Index Registers | _o048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(=-) IR0 to ,—(- -) IR15

SET turns the operand bit ON when the execution condition is ON, and does
not affect the status of the operand bit when the execution condition is OFF.
Use RSET to turn OFF a bit that has been turned ON with SET.

Execution condition SEF
of SET

ON
Status of B OFF

RSET turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is
OFF. Use SET to turn ON a bit that has been turned OFF with RSET.

Execution condition ON
of RSET OFF

Status of B

SET and RSET have immediate refreshing variations (!SET and !RSET).
When an external output bit has been specified for B in one of these instruc-
tions, any changes to B will be refreshed when the instruction is executed and
reflected immediately in the output bit for the CPU Unit built-in output.

The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SET and RSET instructions can be programmed
completely independently. Furthermore, the same bit may be used as the
operand in any number of SET or RSET instructions.

No flags are affected by SET and RSET.

SET and RSET cannot be used to set and reset timers and counters.

When SET or RSET is programmed between IL(002) and ILC(003) or
JMP(004) and JME(005), the status of the specified bit will not be changed if
the program section is interlocked or jumped.

123

Sequence Output Instructions Section 3-3

Example

Differences between OUT/OUT NOT and SET/RSET

The operation of SET differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET differs from OUT NOT because OUT NOT turns the operand bit ON
when its execution condition is OFF.

0.00 100.00 10 100.00 is turned ON/OFF
| when CIO 0.00 goes ON/OFF.

0.01
I} SET CIlO 100.01 is turned ON when
100.01 CIO 0.01 goes ON; it remains
’ ON until CIO 0.02 goes ON.
0.02
I} RSET
100.01

3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

124

SETA(530) turns ON the specified number of consecutive bits.
RSTA(531) turns OFF the specified number of consecutive bits.

— | SETA(530)
D D: Beginning word
N1 N1: Beginning bit
N2 N2: Number of bits
— | RSTA(531)
D D: Beginning word
N1 N1: Beginning bit
N2 N2: Number of bits
Variations Executed Each Cycle for ON Condition SETA(530)

Executed Once for Upward Differentiation @SETA(530)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition RSTA(531)
Executed Once for Upward Differentiation @RSTA(531)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

OK OK OK OK

Sequence Output Instructions Section 3-3

Operands

Note

Operand Specifications

Description

D: Beginning Word
Specifies the first word in which bits will be turned ON or OFF.
N1: Beginning Bit

Specifies the first bit which will be turned ON or OFF. N1 must be #0000 to
#000F (&0 to &15).

N2: Number of Bits
Specifies the number of bits which will be turned ON or OFF. N2 must be
#0000 to #FFFF (&0 to &65535).

The bits being turned ON or OFF must be in the same data area. (The range
of words is roughly D to D+N2+16.)

15 0
D
to
D: 4,096 words max.
Area D N1 N2
CIO Area ClIO0to ClO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959 A0 to A959
Timer Area TOO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *D0 to *D32767
Constants #0000 to #000F | #0000 to #FFFF
(binary) or &0 to | (binary) or &0 to
&15 &65535

Data Registers --- DRO to DR15
Index Registers
Indirect addressing using ,IR0 to ,IR15
Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

,—(=-) IR0 to, —-(——) IR15

The operation of SETA(530) and RSTA(531) are described separately below.

Operation of SETA(530)

SETA(530) turns ON N2 bits, beginning from bit N1 of D, and continuing to the
left (more-significant bits). All other bits are left unchanged. (No changes will
be made if N2 is set to 0.)

125

Sequence Output Instructions Section 3-3

Bits turned ON by SETA(530) can be turned OFF by any other instructions,
not just RSTA(531).

‘—N1

15 Eo

N2 bits are set to 1 (ON).

SETA(530) can be used to turn ON bits in data areas that are normally
accessed by words only, such as the DM area.

Operation of RSTA(531)

RSTA(531) turns OFF N2 bits, beginning from bit N1 of D, and continuing to
the left (more-significant bits). All other bits are left unchanged. (No changes
will be made if N2 is set to 0.)

Bits turned OFF by RSTA(531) can be turned ON by any other instructions,
not just SETA(530).

‘—N1

15 Eo

N2 bits are reset to 0 (OFF).

RSTA(531) can be used to turn OFF bits in data areas that are normally
accessed by words only, such as the DM area.

Flags
Name Label Operation
Error Flag ER ON if N1 is not within the specified range of 0000 to 000F.
OFF in all other cases.
Examples SETA(530) Example

When CIO 0.00 is turned ON in the following example, the 20 bits (0014 hexa-
decimal) beginning with bit 5 of CIO 200 are turned ON.

T
t SETA - N1: Bit5
D 200 15 1211 87 543 0
N1 &5 D: 200 N2: 20 bits
N2 820 ot| ¢ [ilrataatd

126

Sequence Qutput Instructions

Section 3-3

RSTA(531) Example

When CIO 0.01 is turned ON in the following example, the 20 bits (0014 hexa-

decimal) beginning with bit 3 of CIO 210 are turned OFF.

RSTA

N1: Bit 3
210 15 1211 87 43 0
&3 D:2t0foooojoooojoooonle] |

3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operands

SETB(532) turns ON the specified bit.
RSTB(533) turns OFF the specified bit.

— |SETB(532)| D: Word address
D N: Bit number
N
— |RSTB(533) D: Word address
D N: Bit number
N
Variations Executed Each Cycle for ON Condition SETB(532)
Executed Once for Upward Differentiation @SETB(532)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification ISETB(532)
Combined Executed Once and Bit Refreshed l@SETB(532)
Variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed Not supported
Immediately for Downward Differentiation
Variations Executed Each Cycle for ON Condition RSTB(533)
Executed Once for Upward Differentiation @RSTB(533)
Executed Once for Downward Differentiation | Not supported
Immediate Refreshing Specification IRSTB(533)
Combined Executed Once and Bit Refreshed I@RSTB(533)
Variations Immediately for Upward Differentiation
Executed Once and Bit Refreshed Not supported
Immediately for Downward Differentiation

Block program areas | Step program areas | Subroutines

Interrupt tasks

OK OK OK

OK

D: Word Address
Specifies the word in which the bit will be turned ON or OFF.

N: Beginning Bit

Specifies the bit which will be turned ON or OFF. N must be #0000 to #000F

(&0 to &15).

127

Sequence Output Instructions Section 3-3

Operand Specifications

Description

128

Area D N

CIO Area ClO0to ClO 6143

Work Area WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A448 to A959 AOQ to A959

Timer Area TOO00O0 to T4095

Counter Area C0000 to C4095

DM Area DO to D32767

Indirect DM addresses in @ DO to @ D32767

binary

Indirect DM addresses in BCD | *D0 to *D32767

Constants #0000 to #000F (binary)

or &0 to &15

Data Registers DRO to DR15

Index Registers

Indirect addressing using ,IRO to ,IR15

Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15
JRO+(++) to ,IR15+(++)
,—(=-) IR0 to, —=(— —) IR15

The functions of SETB(532) and RSTB(533) are described separately below.

Operation of SETB(532)

SETB(532) turns ON bit N of word D when the execution condition is ON. The
status of the bit is not affected when the execution condition is OFF. Unlike
SET, SETB(532) can turn ON a bit in the DM area.

15
INEERERERRENEND
T— This bit is turned ON.
Execution condition g::lF
Bit N of word D 8';‘,: ‘

Bits turned ON by SETB(532) can be turned OFF by any other instruction, not
just RSTB(533).

Sequence Output Instructions Section 3-3

Flags

Precautions

Operation of RSTB(533)

RSTB(533) turns OFF bit N of word D when the execution condition is ON.
The status of the bit is not affected when the execution condition is OFF. (Use
SETB(532) to turn ON the bit.) Unlike RST, RSTB(533) can turn OFF a bit in
the DM area.

15
INNNNNNERENNNED

This bit is turned OFF.

onconaiton &[] [
Execution condition OF

- ON —|
Bit N of word D OFF

Bits turned OFF by RSTB(533) can be turned ON by any other instruction, not
just SETB(532).

Name Label Operation
Error Flag ER ON if N is not within the specified range of 0000 to 000F
(&0 to &15).
OFF in all other cases.

SETB(532) and RSTB(533) cannot set/reset timers and counters.

When SETB(532) or RSTB(533) is programmed between IL(002) and
ILC(003) or JMP(004) and JME(005), the status of the specified bit will not be
changed if the program section is interlocked or jumped, i.e., when the inter-
lock condition or jump condition is OFF.

SETB(532) and RSTB(533) have immediate refreshing variations
('SETB(532) and 'RSTB(533)). When an external output bit has been speci-
fied in one of these instructions, any changes to the specified bit will be
refreshed when the instruction is executed and reflected immediately in the
output bit for the CPU Unit built-in output.

Differences between SET/RSET and SETB(532)/RSTB(533)
The SET and RSET instructions operate somewhat differently from
SETB(532) and RSTB(533).

1. The instructions operate in the same way when the specified bit is in the
CIO, W, H, or A Area.

2. The SETB(532) and RSTB(533) instructions can control bits in the DM Ar-
ea, unlike SET and RSET.

Differences between OUTB(534) and SETB(532)/RSTB(533)

The OUTB(534) instruction operates somewhat differently from SETB(532)

and RSTB(533).

1. The SETB(532) and RSTB(533) instructions change the status of the
specified bit only when their execution condition is ON. These instructions

have no effect on the status of the specified bit when their execution con-
dition is OFF.

2. The OUTB(534) instruction turns ON the specified bit when its execution
condition is ON and turns OFF the specified bit when its execution condi-
tion is OFF.

129

Sequence Output Instructions Section 3-3

3. The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SETB(532) and RSTB(533) instructions can be
programmed completely independently. Furthermore, the same bit may be
used as the operand in any number of SETB(532) and RSTB(533) instruc-

tions.
0.00
} } SETB | Bit 02 of DO is turned ON
DO when CIO 0.00 is ON.
&2
0.01
} } RSTB | Bit 02 of D2 is turned OFF
D2 when CIO 0.01 is ON.
&2

3-3-8 SINGLE BIT OUTPUT: OUTB(534)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operands

Operand Specifications

130

OUTB(534) outputs the status of the instruction’s execution condition to the
specified bit. OUTB(534) can control a bit in the DM Area, unlike OUT.

— |OUTB(534)[D: Word address
D N: Bit number
N
Variations Executed Each Cycle for ON Condition OUTB(534)

Executed Once for Upward Differentiation @OUTB(534)
Executed Once for Downward Differentiation | Not supported

Immediate Refreshing Specification IOUTB(534)

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK OK

D: Word Address
Specifies the word containing the bit to be controlled.

N: Beginning Bit
Specifies the bit to be controlled. N must be #0000 to #000F (&0 to &15).

Area D | N
CIO Area ClO0to ClO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A448 to A959 AOQ to A959
Timer Area TOO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *D0 to *D32767
Constants #0000 to #000F (binary)
or &0 to &15

Sequence Output Instructions Section 3-3

Description

Flags

Precautions

Example

Area D N
Data Registers DRO to DR15
Index Registers
Indirect addressing using ,IRO to ,IR15
Index Registers —2048 to +2047, IR0 to —2048 to +2047, IR15

DRO to DR15, IR0 to IR15
JJRO+(++) to ,IR15+(++)

—~(--) IR0 to, =(- -) IR15

When the execution condition is ON, OUTB(534) turns ON bit N of word D.
When the execution condition is OFF, OUTB(534) turns OFF bit N of word D.

L This bit is turned OFF.

. .. ON
Execution condition
OFF

. ON
Bit N of word D
OFF

If the immediate refreshing version is not used, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If the imme-
diate refreshing version is used, the status of the execution condition (power
flow) is written to the CPU Unit’s output terminal as well as the output bit in 1/0
memory.

There are no flags affected by this instruction.

Immediate refreshing (IOUTB(534)) can be specified. An immediate refresh
instruction updates the status of the output terminal just after the instruction is
executed on an output bit allocated to a CPU Unit built-in output, at the same
time as it writes the status of the execution condition (power flow) to the spec-
ified output bit in 1/O memory.

When OUTB(534) is programmed between [IL(002) and ILC(003), the speci-
fied bit will be turned OFF if the program section is interlocked. (This is the
same as an OUT instruction in an interlocked program section.)

When a word is specified for the bit number (N), only bits 00 to 03 of N are

used. For example, if N contains FFFA hex, OUTB(534) will control bit 10 of
word D.

OUTB | Bit 10 of DO is turned OFF
DO when CIO 0.00 is OFF.

&10

131

Sequence Control Instructions Section 3-4

3-4 Sequence Control Instructions
3-4-1 END: END(001)

Purpose Indicates the end of a program.

Ladder Symbol
— | END(001)

Variations
Variations | Executed Each Cycle for ON Condition END(001)
Immediate Refreshing Specification Not supported

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed Not allowed Not allowed OK

Description END(001) completes the execution of a program for that cycle. No instructions
written after END(001) will be executed.

Execution proceeds to the program with the next task number. When the pro-
gram being executed has the highest task number in the program, END(001)
marks the end of the overall main program.

-

Task 1 Program A

To the next task number

|

Task2 Program B

To the next task number

|

Taskn Program Z

I/O refreshing

Precautions Always place END(001) at the end of each program. A programming error will
occur if there is not an END(001) instruction in the program.

End of the main program

T

132

Sequence Control Instructions

Section 3-4

3-4-2 NO OPERATION: NOP(000)

Purpose This instruction has no function. (No processing is performed for NOP(000).)
Ladder Symbol There is no ladder symbol associated with NOP(000).
Variations

Variations | Executed Each Cycle for ON Condition NOP(000)

Immediate Refreshing Specification

Not supported

Applicable Program Areas

Block program areas

Step program areas

Subroutines

Interrupt tasks

OK

OK

OK

OK

Description No processing is performed for NOP(000), but this instruction can be used to
set aside lines in the program where instructions will be inserted later. When
the instructions are inserted later, there will be no change in program

addresses.

Flags No flags are affected by NOP(000).

Precautions NOP(000) can only be used with mnemonic displays, not with ladder pro-
grams.

3-4-3 Overview of Interlock Instructions

Interlock Instructions The following instruction combinations can be used to interlock outputs in a

program section.

* INTERLOCK and INTERLOCK CLEAR (IL(002) and IL(003))

e MULTI-INTERLOCK DIFFERENTIATION HOLD and MULTI-INTERLOCK
CLEAR (MILH(517) and MILC(519))*
Note MILH(517) holds the status of the Differentiation Flag, so differen-

tiated instructions that were interlocked are executed after the in-
terlock is cleared.

e MULTI-INTERLOCK DIFFERENTIATION RELEASE and MULTI-INTER-
LOCK CLEAR (MILR(518) and MILC(519))*
Note MILR(518) does not hold the status of the Differentiation Flag, so

differentiated instructions that were interlocked are not executed af-
ter the interlock is cleared.

133

Sequence Control Instructions

Section 3-4

Differences between
Interlocks and Multiple
Interlocks

Differences between
MILH(517) and MILR(518)

Precautions

134

Regular interlocks (IL(002) and IL(003)) cannot be nested, but multiple inter-
locks (MILH(517), MILR(518), and MILC(519)) can be nested. Ladder pro-
gramming can be simplified by nesting multiple interlocks, as shown in the
following diagram.

Interlocks with MILH and MILC
a

Interlocks with IL and ILC

a

[y 4
| MILH L |-
0
[~]
Lo~
ILC | =
o a b
— ———{ MILH o
1 —H—
L]
L~ |
ILc | =
C
— ————{ MILH a b c
2 HAHF L [+
L w
L s]
Ic | =
MILC
2
MILC
1| <
MILC
0|<—

Differentiated instructions (DIFU, DIFD, or instructions with a @ or % prefix)
operate differently in interlocks created with MILH(517) and MILR(518).

The operation of differentiated instructions in an interlock created with
MILH(517) is identical to the operation in an interlock created with IL(002).

For details, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTER-
LOCK CLEAR: MILH(517), MILR(518), and MILC(519).

Do not combine interlocks created with different interlock instructions (IL-ILC,
MILH-MILC, and MILR-MILC). The interlocks may not operate properly if dif-
ferent interlock methods are used together. For details on combining instruc-
tions, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-
INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTERLOCK
CLEAR: MILH(517), MILR(518), and MILC(519).

Sequence Control Instructions

Section 3-4

Note

Differences between
Interlocks and Jumps

For example, an MILH(517) instruction cannot be inserted between IL(002)

and IL(003).

i o)

|} MILH |~

ILC

MILH(517) is in an interlocked area
between IL(002) and ILC.(003).

The different interlocks (IL-ILC, MILH-MILC, and MILR-MILC) can be used
together as long as the interlocked program sections do not overlap.

For example, all three interlock methods can be used without overlapping, as

shown in the following diagram.

1 IL

ILC

|} MILH

MILC

|} MILR

MILC

Different interlock methods can be
used as long as the interlocked
areas do not overlap.

The following table shows the differences between interlocks (created with
IL(002)/ILC(003), MILH(517)/MILC(519), or MILR(518)/MILC(519)) and jumps

created with JMP(004)/JME(005).

Item

Treatment in IL(002)/ILC(003), MILH(517)/
MILC(519), or MILR(518)/MILC(519))

Treatment in
JMP(004)/JME(005)

Instruction execution

Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are not
executed.

No instructions are executed.

Output status in instructions

Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all out-
puts retain their previous status.

All outputs retain their previous status.

(except (TTIM(087),
TTIMX(555), MTIM(543), and
MTIMX(554))

Bits in OUT, OUT NOT, OFF All outputs retain their previous status.
OuUTB(534)
Status of timer instructions Reset Operating timers (TIM, TIMX(550),

TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552) only) continue timing because
the PVs are updated even when the timer
instruction is not being executed.

135

Sequence Control Instructions Section 3-4

3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Description

Note

136

Interlocks all outputs between IL(002) and ILC(003) when the execution con-
dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

- IL(002)

— | ILC(003)

Variations | Interlocks when OFF/Does Not interlock when ON | IL(002)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition ILC(003)
Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed Not allowed OK OK

When the execution condition for IL(002) is OFF, the outputs for all instruc-
tions between IL(002) and ILC(003) are interlocked. When the execution con-
dition for IL(002) is ON, the instructions between IL(002) and ILC(003) are
executed normally.

Execution Execution
Execution condition ON condition OFF
condition

e I S

Normal Outputs

Interlocked section execution interlocked.

of the program

ILC S GECEEF R 1 _____

The following table shows the treatment of various outputs in an interlocked
section between IL(002) and ILC(003).

Instruction Treatment
Bits specified in OUT, OUT NOT, or OUTB(534) OFF
TIM, TIMX(550), TIMH(015), Completion Flag OFF (reset)
E\')I/'l_""l_)'()((?g;;) T'Mull:l((gjg)) and PV Time set value (reset)
TIMXL(553)
Bits/words specified in all other instructions (See note.) | Retain previous status.

Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

If there are bits which you want to remain ON in an interlocked program sec-
tion, set these bits to ON with SET just before I1L(002).

Sequence Control Instructions

Section 3-4

It is often more efficient to switch a program section with IL(002) and
ILC(003). When several processes are controlled with the same execution
condition, it takes fewer program steps to put these processes between
IL(002) and ILC(003).

i

i

The following table shows the differences between IL(002)/ILC(003) and
JMP(004)/JME(005).

Item

Treatment in
IL(002)/ILC(003)

Treatment in
JMP(004)/JME(005)

Instruction execution

Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are
not executed.

No instructions are executed.

Output status in instructions

Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all

All outputs retain their previous status.

outputs retain their previous status.

Bits in OUT, OUT NOT, OUTB(534) |OFF All outputs retain their previous status.
Status of timer instructions Reset Operating timers (TIM, TIMX(550),
(except (TTIM(087), TTIMX(555), TIMH(015), TIMHX(551), TMHH(540),
MTIM(543), and MTIMX(554)) TMHHX(552) only) continue timing
because the PVs are updated even
when the timer instruction is not being
executed.
Flags
Name Label Operation
Error Flag ER OFF
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged

Precautions

The cycle time is not shortened when a section of the program is interlocked
because the interlocked instructions are executed internally.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between IL(002) and ILC(003). Changes in the execution condition
for DIFU(013), DIFD(014), or a differentiated instruction are not recorded if the
DIFU(013) or DIFD(014) is in an interlocked section and the execution condi-
tion for the 1L(002) is OFF.

137

Sequence Control Instructions

Section 3-4

Differential Instruction in
Interlocks

138

In general, IL(002) and ILC(003) are used in pairs, although it is possible to
use more than one IL(002) with a single ILC(003) as shown in the following
diagram. If IL(002) and ILC(003) are not paired, an error message will appear
when the program check is performed but the program will be executed prop-

erly.

1 =

1 =
b

ILC

Execution condition

Program section

a b A B
OFF ON Interlocked Interlocked
OFF OFF Interlocked Interlocked
ON OFF Not interlocked | Interlocked
ON ON Not interlocked | Not interlocked

IL(002) and ILC(003) cannot be nested, as in the following diagram. (Use
MILH(517)/MILR(518) and MILC(519) when it is necessary to nest interlocks.)

-

ILC

ILC

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) written between IL(002) and ILC(003) are executed according to
changes in memory status between when the interlock is started and when it
is released. If a differentiated condition is met, it will be effected when the
interlock is released.

Sequence Control Instructions Section 3-4

For example, if the input condition for DIFU(013) is OFF when an interlock is
started and ON when the interlock is released, the operand bit of DIFU(013)
will be turned ON when the interlock is released.
0.00

|1 A ILC

1. Assume that the input condition for DIFU(013) (CIO 0.01) is OFF when CIO 0.00 turns OFF
(i.e., when the interlock is started.
2. Assume that CIO 0.01 turns ON while CIO 0.00 is OFF (i.e., while the interlock is in effect).
3. DIFU(013) will be executed to turn ON CIO 100.00 when CIO 0.00 turns ON
(i.e., when the interlock is released) if the input condition for DIFU(013) (CIO 0.01) is still ON.

0.01
1 DIFU
100.00

ILC

IL(002) affects differentiated operation in the same way as MILH(517).
Timing Chart

No interlocked. Interlocked. No interlocked.
ON ; ;
CIO 0.00
OFF .
E Differentiation condition
ON |---mmmmmmmmmme- Foomeeoeooes 7
CIlO 0.01 i T i
OFF - !
OFF \ !
DIFU(013) executed.
M
[©)Y
CIlO 10.00
OFF -
1 cycle

139

Sequence Control Instructions Section 3-4

Examples

When CIO 0.00 is OFF in the following example, all outputs between IL(002)
and ILC(003) are interlocked. When CIO 0.00 is ON in the following example,
the instructions between IL(002) and ILC(003) are executed normally.

! !

------------ e |

0.00 ! C100.00 ! CIO 0.00 OFF!
— o =
e A bommmmaenaned !
0.01 100.00 ;
— \OFF
L 002 HO.00 : :
——0O || o
Normal E Out: uts
execution ; interlocked
H TIM E EReset I
| SET E : Retained
100.03] ! i
I CNT ERetainecL
_”_I_
ILC ' l

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK
DIFFERENTIATION RELEASE, and MULTI-INTERLOCK CLEAR:
MILH(517), MILR(518), and MILC(519)

Purpose

Ladder Symbols

140

Interlocks all outputs between MILH(517) (or MILR(518)) and MILC(519)
when the execution condition for MILH(517) (or MILR(518)) is OFF. MILH(517)
(or MILR(518)) and MILC(519) are normally used in pairs.

Unlike the IL(002)/ILC(003) interlocks, the MILH(517)/MILC(519) and
MILR(518)/MILC(519) interlocks can be nested. The operation of differenti-
ated instructions is different for interlocks created with MILH(517) and
MILR(518).

—— MILH(517)
N N: Interlock Number
D D: Interlock Status Bit
— MILR(518)
N N: Interlock Number
D: Interlock Status Bit

Sequence Control Instructions

Section 3-4

Operands

Operand Specifications

Variations

Applicable Program Areas

MILC(519)
N N: Interlock Number

N: Interlock Number

The interlock number must be between 0 and 15. Match the interlock number
of the MILH(517) (or MILR(518)) instruction with the same number in the cor-
responding MILC(519) instruction.

The interlock numbers can be used in any order.

D: Interlock Status Bit
* ON when the program section is not interlocked.
* OFF when the program section is interlocked.

When the interlock is engaged, the Interlock Status Bit can be force-set to
release the interlock. Conversely, when the interlock is not engaged, the Inter-
lock Status Bit can be force-reset to engage the interlock.

Area N D

CIO Area ClO 0.00 to CIO 6143.15

Work Area --- WO0.00 to W511.15

Holding Bit Area - H0.00 to H511.15

Auxiliary Bit Area --- A0.00 to A959.15

Timer Area

Counter Area

DM Area --- ---

Indirect DM addresses | ---
in binary

Indirect DM addresses | ---
in BCD

Constants

Data Registers

Index Registers --- .

Indirect addressing ,IRO to ,IR15

using Index Registers —2048 to +2047 ,IR0 to
—2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

Variations |Interlocks when OFF/Does Not interlock when ON | MILH(517) and

MILR(518)

Immediate Refreshing Specification Not supported

Variations | Executed Each Cycle for ON Condition MILC(519)

Immediate Refreshing Specification Not supported

The following table shows the applicable program areas for MILH(517),
MILR(518), and MILC(519).

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

Not allowed

OK

OK

141

Sequence Control Instructions Section 3-4

Description

142

Note

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is OFF, the outputs for all instructions between that MILH(517)/
MILR(518) instruction and the next MILC(519) with interlock number N are
interlocked.

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is ON, the instructions between that MILH(517)/MILR(518) instruc-
tion and the next MILC(519) with interlock number N are executed normally.

Interlock Status

The following table shows the treatment of various outputs in an interlocked
section between MILH(517)/MILR(518) instruction and the next MILC(519).

Instruction Treatment
Bits specified in OUT, OUT NOT, or OUTB(534) OFF
TIM, TIMX(550), TIMH(015), Completion Flag OFF (reset)
E\?IAI-II-II-)I()((&(Sg;%) TMHE((gjg)) and PV Time set value (reset)
TIMXL(553)
Bits/words specified in all other instructions (See note.) | Retain previous status.

Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

The MILH(517)/MILR(518) instruction turns OFF the Interlock Status Bit
(operand D) when the interlock is in engaged and turns ON the bit when the
interlock is not engaged. Consequently, the Interlock Status Bit can be moni-
tored to check whether or not the interlock for a given interlock number is
engaged.

Input condition ON
(Normal operation) Input condition OFF

:

|} MILH |- -- 1mmee-
Input condition n i

Normal Outputs interlocked.

operation (Outputs OFF,
Interlock timers reset, etc.)
Interlocked program Status Bit Interlock Status Bit
section (d) ON (d) OFF
MILC 'I ffffff
ol
Nesting

Interlocks are nested when an interlocked program section (MILH(517)/
MILR(518) and MILC(519) combination) is placed within another interlocked
program section (MILH(517)/MILR(518) and MILC(519) combination). Inter-
locks can be nested up to 16 levels.

Nesting can be used for the following kinds of applications.

Sequence Control Instructions Section 3-4

* Example 1

Interlocking the entire program with one condition and interlocking a part
of the program with another condition (1 nesting level)

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

* A1 and A2 are interlocked when the Emergency Stop Button is ON.
* A2 is interlocked when Conveyor RUN is OFF.

Global interlock

(Emergency stop)
/H’ MILH When the Emergency Stop is ON (input
01— condition OFF), both A1 and A2 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), A1 is executed normally
and A2 is controlled by the Conveyor
A1 (Peripheral processing) RUN switch as described below.
Partial interlock
(Conveyor RUN)
I I MILH When the Conveyor RUN switch is OFF
__ | (input condition OFF), A2 is interlocked.
1 When the Conveyor RUN switch is ON
(input condition ON), A2 is executed

normally.

A2 (Conveyor operation)

MILC

MILC

* Example 2
Interlocking the entire program with one condition and interlocking two
overlapping parts of the program with other conditions (2 nesting levels)

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)
Partial interlock
(Arm RUN)
A3 (Arm operation)

* A1, A2, and A3 are interlocked when the Emergency Stop Button is
ON.

* A2 and A3 are interlocked when Conveyor RUN is OFF.

143

Sequence Control Instructions Section 3-4

144

¢ A3 is interlocked when Arm RUN is OFF.

Global interlock
(Emergency stop)

,H/ MILH When the Emergency Stop is ON (input
ol—— condition OFF), A1, A2, and A3 are
interlocked.

When the Emergency Stop is OFF (input
condition ON), A1 is executed normally and A2
and A3 are controlled by the Conveyor RUN
and Arm RUN switches as described below.

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

I I MILH When the Conveyor RUN switch is OFF (input

1 |— | condition OFF), both A2 and A3 are interlocked.
When the Conveyor RUN switch is ON (input
condition ON), A2 is executed normally and A3 is
controlled by the Arm RUN switch as described

A2 (Conveyor operation) below.
Partial interlock
(Arm RUN)
|} MILH |— | | When the Arm RUN switch is OFF (input
2 condition OFF), A3 is interlocked.

When the Arm RUN switch is ON (input
condition ON), A3 is executed normally.

A3 (Arm operation)

MILC

MILC

MILC

Differences between MILH(517) and MILR(518)

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) operate differently in interlocks created with MILH(517) and
MILR(518).

When a program section is interlocked with MILR(518), a differentiated
instruction will not be executed when the interlock is cleared even if the differ-
entiation condition was activated during the interlock (comparing the status of
the execution condition when the interlock started to its status when the inter-
lock was cleared).

When a program section is interlocked with MILH(517), a differentiated
instruction will be executed when the interlock is cleared if the differentiation
condition was activated during the interlock (comparing the status of the exe-
cution condition when the interlock started to its status when the interlock was
cleared).

Sequence Control Instructions

Section 3-4

Instruction Operation of Differentiated Instructions
MILH(517) A differentiated instruction (DIFU, DIFD, or
MULTI-INTERLOCK DIFFER- | instruction with a @ or % prefix) will be exe-
ENTIATION HOLD cuted after the interlock is cleared if the differ-

entiation condition of the instruction was
established while the instruction was inter-
locked. (The status of the execution condition
when the interlock started is compared to its
status when the interlock was cleared.)

MILR(518) A differentiated instruction (DIFU, DIFD, or
MULTI-INTERLOCK DIFFER- | instruction with a @ or % prefix) will not be
ENTIATION RELEASE executed after the interlock is cleared even if

the differentiation condition of the instruction
was established while the instruction was inter-
locked.

* Operation of Differentiated Instructions in an MILH(517) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILH(517) and the corresponding MILC(519), that in-
struction will be executed after the interlock is cleared if the differentiation
condition of the instruction was established. (The system compares the ex-
ecution condition’s status when the interlock started to its status when the
interlock was cleared.)

In the same way, a differentiated instruction will be executed if its execution
condition is established at the same time that the interlock is started or
cleared.

Many other conditions in the program may cause the differentiation condi-
tion to be reset even if it was established during the interlock. In this case,
the differentiation instruction will not be executed when the interlock is
cleared.

* Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will be executed when the interlock
is cleared. (Differentiated instructions operate the same in the
MILH(517) interlock as they would in an 1L(002) interlock.)

0.00
|} MILH

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.
2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),
3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is executed if CIO 0.01 is still ON.

001 <’
|} DIFU

100.00

MILC

145

Sequence Control Instructions

Section 3-4

146

Timing Chart
Not interlocked Interlocked Not interlocked
‘ / _ / > /)
ON ‘ i
0.00
OFF
Status (OFF) at ! 1
ON startofinterlock ; ON Differentiation condition established
0.01 N \
OFF OFF Q\ . \Status (ON) when
: ' interlock is cleared
MILH(517) interlock DIFU(013) is executed.
Yy
ON [
100.00
OFF
||
1 cycle

Operation of Differentiated Instructions in an MILR(518) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILR(518) and the corresponding MILC(519), that in-
struction will not be executed after the interlock is cleared even if the dif-
ferentiation condition of the instruction was established. (The system
compares the execution condition’s status in the cycle when the interlock
started to its status in the cycle when the interlock was cleared.)

In the same way, a differentiated instruction will not be executed if its exe-
cution condition is established at the same time that the interlock is started
or cleared.

e Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will not be executed when the in-
terlock is cleared.

0.00
|} MILR

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.
2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),

001 <
|} DIFU

100.00

MILC

3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is not executed even though CIO 0.01 is still ON.

Sequence Control Instructions Section 3-4

Timing Chart
Not interlocked Interlocked Not interlocked
‘ / N / > / >
ON ‘ ‘
0.00
OFF
3 ON
ON j----mmmmmmmmmeees prommnenoenenees
0.01 3 T
OFF .
OFF
MILR(518) inte% §
ON fmmmmmmmmm e DIFU(013) is not executed.
100.00 v
OFF

Controlling Interlock Status from the CX-Programmer

An interlock can be engaged or released manually by force-resetting or force-
setting the Interlock Status Bit (specified with operand D of MILH(517) and
MILR(518)) from the CX-Programmer. The forced status of the Interlock Sta-
tus Bit has priority and overrides the interlock status calculated by program
execution.

Force-set: Releases the interlock.

OFF
|} MILH

n
100.00 CIO 100.00 is OFF when the interlock is engaged.

Program section
controlled by interlock If CIO 100.00 is force-set (ON), the interlock is released.

MILC
n

Force-reset: Engages the interlock.

ON
|} MILH
n
100.00 CIO 100.00 is ON when the interlock is not engaged.
Program section .) .
controlled by interlock If CIO 100.00 is force-reset (OFF), the interlock is engaged.
MILC
n

Note Program operation can be switched more efficiently by using interlocks with
MILH(517) or MILR(518).

147

Sequence Control Instructions Section 3-4

Instead of switching processing with compound conditions, insert an
MILH(517) or MILR(518) instruction before each process and an MILC(519)
instruction after each process.

a a
—] A1 | — F——{MILH
O —
b
}—{ A2 | | A1 |
b
—F————MILH |
]
| E |
MILC
1| <
MILC
0| =

Unlike the IL(002) interlocks, MILH(517) and MILR(518) interlocks can be
nested, so the operation of similar programs will be different if MILH(517) or
MILR(518) is used instead of ILC(002).

Program with MILH(517)/MILC(519) Interlocks

a
(| MILH
O —
100.00
A1
b
(| MILH
1 —
100.01
A2
MILC
1| <
A3
MILC
0| <—
Execution condition Program section
a b A1 A2 A3
OFF ON Interlocked Interlocked Interlocked
OFF
ON OFF Not interlocked | Interlocked Not interlocked
ON ON Not interlocked | Not interlocked | Not interlocked

148

Sequence Control Instructions

Section 3-4

Flags

Precautions

a
|1
I

Program with IL(002)/ILC(003) Interlocks

L J—

A1l

—_—

i)

A2

ILC ~

A3

This program section is not
controlled by the interlock.

instruction is ignored

SO ...

Execution condition

Program section

a b A1 A2 A3
OFF ON Interlocked Interlocked Not interlocked
OFF (Not controlled by
- the IL(002)/
ON OFF Not !nterlocked Interllocked ILC(003) interlock.)
ON ON Not interlocked Not interlocked

If there are bits which you want to remain ON in a program section interlocked
by MILH(517) or MILR(518), set these bits to ON with SET just before the

MILH(517) or MILR(518) instruction.

Name Label

Operation

Error Flag ER

OFF

The cycle time is not shortened when a section of the program is interlocked
by MILH(517) or MILR(518) because the interlocked instructions are executed

internally.

149

Sequence Control Instructions Section 3-4

150

When nesting interlocks, assign interlock numbers so that the nested program
section does not exceed the outer program section.

a
|} MILH
0 E—
A1
b
1 MILH |[—
1
| w2 |
MILC
0|
| 5 |
The nested program section
MILC must not go beyond the outer
] program section.

Other instructions can be input between the MILC(519) instructions, as shown
in the following diagram.

a
|} MILH
O —
100.00
A1
b
|} MILH |
1
100.01
A2
MILC
1| <«
Other instructions can be inserted between
two MILC(519) instructions. In this case,
A3 sections A1 and A3 operate together. (They
are interlocked when "a" is OFF, regardless
of the ON/OFF status of "b".)
MILC
0=+

If there is an ILC(003) instruction between an MILH(517) and MILC(519) pair,
the program section between MILH(517) and ILC(003) will be interlocked.

Sequence Control Instructions Section 3-4

—_

I MILH When input condition "a" is OFF, only
0 program section A1 is interlocked.
| 3 |
If there is an ILC(003) instruction,
ILC the interlock is cleared at that point.
| e |
MILC _— The MILC(519) instruction is ignored.
0

If there is an ILC(003) instruction between an MILR(518) and MILC(519) pair,
the ILC(003) instruction will be ignored and the full program section between
MILR(518) and MILC(519) will be interlocked.

a
I I MILR When input condition "a" is OFF, program

0 sections A1 and A2 are interlocked.

| 3 |
c The ILC(003) instruction is ignored.
| 2 |
MILC
0

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is engaged, the second MILH(517)/MILR(518) will not
operate.

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is not engaged, the second MILH(517)/MILR(518) will
operate normally.

a
I MILH When input condition "a" is OFF, program
sections A1 and A2 are both interlocked,
Ol evenif input condition "b" is ON.

Al
b
1 MILH | When input condition "a” is ON and "b"
0 is OFF, only program section A2 is
interlocked.
A2
MILC
0

151

Sequence Control Instructions Section 3-4

152

Note

The MILR(518) interlocks operate in the same way if there is another
MILH(517) or MILR(518) instruction with the same interlock number between
an MILR(518) and MILC(519) pair.

If there is an MILC(519) instruction with a different interlock number between
an MILH(517)/MILR(518) and MILC(519) pair, that MILC(519) instruction will
be ignored.

a
I I MILH When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.

| 3 |

MILC __— This MILC(519) instruction is ignored.

| 2 |

MILC
0

If there is an MILH(517) instruction between an IL(002) and ILC(003) pair and
the IL(002) interlock is engaged, the MILH(517) instruction has no effect. In
this case, the program section between IL(002) and ILC(003) will be inter-
locked.

If the IL(002) interlock is not engaged and the MILH(517) instruction’s execu-
tion condition (b in this case) is OFF, the program section between MILH(517)
and ILC(003) will be interlocked.

IL When input condition "a" is OFF, program

sections A1 and A2 are both interlocked.

a
|
I

| A |
b
|1 MILH _— If the program section is not interlocked
I by IL(002) and "b" is OFF, program
0 section A2 is interlocked.
| w2 |

ILC

If there is an MILC(519) instruction between an IL(002) and ILC(003) pair, that
MILC(519) instruction will be ignored and the entire program section between
IL(002) and ILC(003) will be interlocked.

Sequence Control Instructions Section 3-4

—_

IL When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.

| 2 |

- The MILC(519) instruction is ignored.

MILC

| e |

ILC

Examples When WO0.00 and WO0.01 are both ON, the instructions between MILH(517)
with interlock number 0 and MILC(519) with interlock number O are executed
normally.

When WO0.00 is OFF, the instructions between MILH(517) with interlock num-
ber 0 and MILC(519) with interlock number 0 are interlocked.

When WO0.00 is ON and WO0.01 are OFF, the instructions between MILH(517)
with interlock number 1 and MILC(519) with interlock number 1 are inter-
locked. The other instructions are executed normally.

WO0.00 and WO0.01 WO0.00 ON and W0.01

W0.00 both ON W0.0? OFF OFF

|} MILH

100.00 Executed

N normally.

200.00

. OFF

|| MILH | \

100.01

0 ?2 Ho.00 Executed . OFF ;)
[O normally. ;
| \ OQutputs
interlocked.

| SET | Held | \ Outputs
‘ : interlocked.
110.03 |

MILC | v

CNT

1 :
' Held Executed

#10 3 normally.
—— :

MILC

153

Sequence Control Instructions

Section 3-4

3-4-6 JUMP and JUMP END: JMP(004) and JME(005)

Purpose

Ladder Symbols

Variations

Applicable Program Areas

Operands

Operand Specifications

154

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number.
JMP(004) and JME(005) are used in pairs.

- | JMP(004)

N N: Jump number
— | JME(005)

N N: Jump number
Variations | Jumps when OFF/Does Not Jump when ON JMP(004)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition JME(005)
Immediate Refreshing Specification Not supported

Block program areas

Step program areas | Subroutines | Interrupt tasks

OK

Not allowed OK OK

N: Jump Number
The jump number must

be 0000 to O0FF (&0 to &255 decimal).

Area N
JMP(004) JME(005)
CIO Area CIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TOO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767 -

Indirect DM addresses in
binary

@ DO to @ D32767

Indirect DM addresses in
BCD

*DO0 to *D32767 ---

Index Registers

Constants #0000 to #00FF (binary) or | #0000 to #00FF (binary) or
&0 to &255 &0 to &255

Data Registers DRO to DR15

Index Registers ---

Indirect addressing using |,IRO to ,IR15

—2048 to +2047, IR0 to
—2048 to +2047, IR15

DRO to DR15, IR0 to IR15

Sequence Control Instructions Section 3-4

When the execution condition for JMP(004) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number. The
instructions between JMP(004) and JME(005) are not executed, so the status
of outputs between JMP(004) and JME(005) is maintained. In block programs,
the instructions between JMP(004) and JME(005) are skipped regardless of
the status of the execution condition.

Description

Execution condition

Instructions
e IS hY jumped

N

L Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
executed

JME

N l

Because all of instructions between JMP(004) and JME(005) are skipped
when the execution condition for JMP(004) is OFF, the cycle time is reduced
by the total execution time of the skipped instructions. In contrast, NOP(000)
processing is performed for instructions between JMPO(515) and JMEO(516),
so the cycle time is not reduced as much with those jump instructions.

The following table compares the various jump instructions.

Item JMP(004) CJP(510) CJPN(511) JMPO(515)
JME(005) JME(005) JME(005) JMEO0(516)
Execution condition for jump OFF ON OFF OFF
Number allowed 256 total No limit

Instruction processing when jumped

Not executed.

NOP(000) processing

Instruction execution time when

None

Same as NOP(000)

jumped

instructions

when jumped

Status of outputs (bits and words)

Bits and words maintain their previous status.

Status of operating timers when
jumped

Operating timers continue timing.

Processing in block programs Always jump. Jump when ON. | Jump when OFF. | Not allowed.
Flags (JMP)
Name Label Operation
Error Flag ER ON if N is not within the specified range of 0 to 255 (0000

Precautions

to 00FF hex).

ON if there is a JMP(004) in the program without a
JME(005) with the same jump number.

ON if there is a JMP(004) in the task without a JME(005)
with the same jump number in the task.

OFF in all other cases.

All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing because the PVs are updated
even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

155

Sequence Control Instructions Section 3-4

156

When JME(005) precedes JMP(004) in the program, the instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execution
condition for JMP(004) is OFF. A Cycle Time Too Long error will occur if the
execution condition is not turned ON or END(001) is not executed within the
maximum cycle time.

JME
N

Program section A is executed
A repeatedly as long as
execution condition a is OFF.

—F—— JmP

N

In block programs, the instructions between JMP(004) and JME(0O5) are
always skipped regardless of the status of the execution condition for
JMP(004).

S
—{—— BPRG
Block program section < N
JMP &1
are]
JME &1
N I BEND

JMP(004) and JME(005) pairs must be in the same task because jumps
between tasks are not allowed. An error will occur if a JME(005) instruction is
not programmed in the same task as its corresponding JMP(004) instruction.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP(004) and JME(005). When DIFU(013), DIFD(014), or
a differentiated instruction is executed in an jumped section immediately after
the execution condition for the JMP(004) has gone ON, the execution condi-
tion for the DIFU(013), DIFD(014), or differentiated instruction will be com-
pared to the execution condition that existed before the jump became effective
(i.e., before the execution condition for JMP(004) went OFF).

Sequence Control Instructions Section 3-4

Examples

Basic Operation

When CIO 0.00 is OFF in the following example, the instructions between
JMP(004) and JME(005) are not executed and the outputs maintain their pre-
vious status.

When CIO 0.00 is ON in the following example, the instructions between
JMP(004) and JME(005) are executed normally.

0.00 i | .
I} JMP iCl00.00 : ClO0.00 !
&1| 'ON 1 OFF
) S RN ¥ N =
O |
——0 -
! | |Normal ! Instructions !
execution' not executed.:
| . » (Outputs re-
: I ' 1 main un-
| 11 L : changed.)
I} SET
1 CNT
_”_r
JME ' l
&1

3-4-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)

Purpose

The operation of CJP(510) is the basically the opposite of JMP(004). When
the execution condition for CJP(510) is ON, program execution jumps directly
to the first JME(005) in the program with the same jump number. CJP(510)
and JME(005) are used in pairs.

The operation of CJPN(511) is almost identical to JMP(004). When the execu-
tion condition for CJP(004) is OFF, program execution jumps directly to the
first JME(005) in the program with the same jump number. CJPN(511) and
JME(005) are used in pairs.

157

Sequence Control Instructions Section 3-4

Ladder Symbols
— | CJP(510)
N N: Jump number
| CJPN(511)
N N: Jump number
Variations
Variations | Jumps when ON/Does Not Jump when OFF | CJP(510)
Immediate Refreshing Specification Not supported
Variations | Jumps when OFF/Does Not Jump when ON | CJPN(511)
Immediate Refreshing Specification Not supported
Variations | Executed Each Cycle for ON Condition JME(005)
Immediate Refreshing Specification Not supported
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
OK Not allowed OK OK
Operands N: Jump Number

The jump number must be 0000 to 00FF (0 to 255 decimal).

Operand Specifications

Area N
CJP(510) | CJPN(511) JME(005)
CIO Area CIO 01to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area | AO to A959
Timer Area TOO000 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM @ DO to @ D32767
addresses in binary
Indirect DM *DO0 to *D32767
addresses in BCD
Constants #0000 to #00FF (binary) or &0 to &255 #0000 to #00FF
(binary) or &0 to
&255
Data Registers DRO to DR15 -
Index Registers --- ---
Indirect addressing |,IR0 to ,IR15
using Index Regis- | _2048 to +2047, IR0 to 2048 to +2047,
ters IR15
DRO to DR15, IR0 to IR15
Description The operation of CJP(510) and CJPN(511) differs only in the execution condi-

tion. CJP(510) jumps to the first JME(005) when the execution condition is ON
and CJPN(511) jumps to the first JME(005) when the execution condition is
OFF.

158

Section 3-4

Sequence Control Instructions

Flags

Precautions

Because the jumped instructions are not executed, the cycle time is reduced
by the total execution time of the jumped instructions.

Operation of CJP(510)

When the execution condition for CJP(510) is OFF, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJP(510) is ON, program execution jumps
directly to the first JME(005) in the program with the same jump number.

Execution Execution
condition OFF condition ON
I o |----go---- {----- ~ Instructions
K jumped

> Instructions in this section are not
executed and output status is

N \ /
)
1
1
'
r
1

Instructions
executed maintained. The instruction execution
! time for these instructions is eliminated.
JME [=--o------ ---- 7
y |

Operation of CJPN(511)

When the execution condition for CJPN(511) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJPN(511) is OFF, program execution
jumps directly to the first JME(005) in the program with the same jump num-

ber.

Execution Execution
condition ON condition OFF
——— cuPN |----g----- P ~ Instructions
K jumped

N

executed and output status is
maintained. The instruction execution

‘I
1
'; > Instructions in this section are not
r
] time for these instructions is eliminated.

Instructions
executed !

JME pmo-f-mmm oo
v |

The following table shows the flags affected by CJP(510) and CJPN(511).

Name Label Operation

ER ON if there is not a JME(005) with the same jump number
as CJP(510) or CJPN(511).

ON if N is not within the specified range of 0 to 255 (0000
to OOFF hex).

ON if there is a CJP(510) or CJPN(511) instruction in a
task without a JME(005) with the same jump number.

OFF in all other cases.

Error Flag

All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing be-cause the PVs are
updated even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

159

Sequence Control Instructions Section 3-4

160

When JME(005) precedes the CJP(510) or CJPN(511) instruction in the pro-
gram, the instructions in-between will be executed repeatedly as long as the
execution condition remains OFF (CJP(510)) or ON (CJPN(511)). A Cycle
Time Too Long error will occur if the jump is not completed by changing the
execution condition executing END(001) within the maximum cycle time.

The CJP(510) or CJPN(511) instructions will operate normally in block pro-
grams.

When the execution condition for the CJP(510) is ON or the execution condi-
tion for CJPN(511) is OFF, program execution will jump directly to the JME
instruction without executing instructions between CJP(510)/CJPN(511) and
JME. No execution time will be required for these instructions and the cycle
time will thus be reduced.

When the execution condition for the JMPO is OFF, NOP processing is exe-
cuted between the JMP0O and JMEQ, requiring execution time. Therefore, the
cycle time will not be reduced.

When a CJP(510) or CJPN(511) instruction is programmed in a task, there
must be a JME(005) with the same jump number because jumps between
tasks are not allowed. An error will occur if a corresponding JME(005) instruc-
tion is not programmed in the same task.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed in a jumped program section. When DIFU(013), DIFD(014), or a dif-
ferentiated instruction is executed in an jumped section immediately after the
execution condition for the CJP(510) has gone OFF (ON for CJPN(511)), the
execution condition for the DIFU(013), DIFD(014), or differentiated instruction
will be compared to the execution condition that existed before the jump
became effective.

Sequence Control Instructions Section 3-4

Example

When CIO 0.00 is ON in the following example, the instructions between
CJP(510) and JME(005) are not executed and the outputs maintain their pre-
vious status.

When CIO 0.00 is OFF in the following example, the instructions between
CJP(510) and JME(005) are executed normally.

N

0.00 ; r
1 CP_ | CI00.00 CIO 0.00
&1| 'ON 1 OFF
I NS S N
0
0
! Instructions |
' not i |Normal
: rexecuted. 1 |execution |
! 1 (Outputs !
! I «remain un- |
1l TIM ichanged.) |
1 SET :
I oNT_ |t ;
] |
JME l
&1

For CUJPN(511), the ON/OFF status of CIO 0.00 would be reversed.

3-4-8 MULTIPLE JUMP and JUMP END: JMPO0(515) and JMEO(516)

Purpose

Ladder Symbols

Variations

When the execution condition for JMPO(515) is OFF, all instructions from
JMPO(515) to the next JMEO(516) in the program are processed as
NOP(000). Use JMP0O(515) and JMEOQO(516) in pairs. There is no limit on the
number of pairs that can be used in the program.

- | JMPO(515)

- | JMEO(516)

Variations | Jumps when OFF/Does Not Jump when ON | JMP0O(515)
Immediate Refreshing Specification Not supported

161

Sequence Control Instructions Section 3-4

Applicable Program Areas

Description

Precautions

162

Variations Executed Each Cycle for ON Condition JMEOQ(516)

Immediate Refreshing Specification Not supported

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed Not allowed OK OK

When the execution condition for IMP0O(515) is ON, no jump is made and the
program executed consecutively as written.

When the execution condition for JMPO(515) is OFF, all instructions from
JMPO(515) to the next JMEO(516) in the program are processed as
NOP(000). Unlike JMP(004), CJP(510), and CJPN(511), JMP0(515) does not
use jump numbers, so these instructions can be placed anywhere in the pro-
gram.

E)gqcution Execution
conditiona ON condition a OFF

A s
JMPO d h
a - \]umped

Instructions !
executed ;

---------- o
1 Jumped instructions are processed as

. NOP(000). Instruction execution times
Execution Execution are the same as NOP(000).

conditionb ON . jition b OFF

Instructions

executed ‘\
---------- i
Instructions
jumped
Unlike JMP(004), CJP(510), and CJPN(511) which jump directly to the first
JME(005) instruction in the program, all of the instructions between
JMPO(515) and JMEO(516) are executed as NOP(000). The execution time of
the jumped instructions will be reduced, but not eliminated. The jumped
instructions themselves are not executed and their outputs (bits and words)
maintain their previous status.

Multiple pairs of JMPO(515) and JMEOQ(516) instructions can be used in the
program, but the pairs cannot be nested.

JMPO(515) and JMEO(516) cannot be used in block programs.

JMPO(515) and JMEOQ(516) pairs must be in the same tasks because jumps
between tasks are not allowed.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP0(515) and JMEO(516). When DIFU(013), DIFD(014),
or a differentiated instruction is executed in an jumped section immediately
after the execution condition for the JMPO(515) has gone ON, the execution
condition for the DIFU(013), DIFD(014), or differentiated instruction will be
compared to the execution condition that existed before the jump became
effective (i.e., before the execution condition for JMPO(515) went OFF).

Sequence Control Instructions

Section 3-4

Example

When CIO 0.00 is OFF in the following example, the instructions between
JMPO(515) and JMEO(516) are processed as NOP(000) instructions and the

outputs maintain their previous status.

When CIO 0.00 is ON in the following example, the instructions between

JMPO(515) and JMEOQ(516) are executed normally.

0.00 i Tttt !
|—- :CI00.00 :CIOO0.00 |
JvPo | | !
e] (gooee igooes
I N NI
0 o 3
0 .
! |Normal + Instructions !
: » |execution ! processed |
: : ' as !
; | ! * NOP(000). !
: TiM | ' (Outputs re- |
i | ymainun- |
E E ' changed.) |
i I} SET ! Lo
N | ¥ 3
l

3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
The instructions between FOR(512) and NEXT(513) are repeated a specified

Purpose

Ladder Symbols

Variations

number of times. FOR(512) and NEXT(513) are used in pairs.

— | FOR(512)
N N: Number of loops
| NEXT(513)
Variations Executed Each Cycle for ON Condition FOR(512)
Executed Each Cycle for ON Condition NEXT(513)
Immediate Refreshing Specification Not supported

163

Sequence Control Instructions

Section 3-4

Applicable Program Areas

Operands

Operand Specifications

Description

164

Block program areas

Step program areas | Subroutines | Interrupt tasks

Not allowed

OK OK OK

N: Number of Loops
The number of loops must be 0000 to FFFF (0 to 65,535 decimal).

Area N
CIO Area ClIO0to CIO 6143
Work Area WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area TO00O0 to T4095
Counter Area C0000 to C4095
DM Area DO to D32767
Indirect DM addresses | @ DO to @ D32767
in binary

Indirect DM addresses
in BCD

*DO0 to *D32767

Constants

#0000 to #FFFF (binary) or &0 to &65,535

using Index Registers

Data Registers DRO to DR15
Index Registers
Indirect addressing IR0 to ,IR15

—2048 to +2047, IR0 to —2048 to +2047, IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

,—(—-) IR0 to, —(— -) IR15

The instructions between FOR(512) and NEXT(513) are executed N times
and then program execution continues with the instruction after NEXT(513).
The BREAK(514) instruction can be used to cancel the loop.

If N is set to 0, the instructions between FOR(512) and NEXT(513) are pro-
cessed as NOP(000) instructions.

Loops can be used to
gramming.

process tables of data with a minimum amount of pro-

FOR Repeated N times

Repeated program section ay

NEXT

——

Section 3-4

Sequence Control Instructions
FOR-NEXT loops can be nested up to 15 levels. In the example below, pro-

gram sections A, B, and C are executed as follows:
A-B->B->CA->B->B->C,andA—-B—->B—>C

— FOR | |
&3

FOR

&2

o]

i
t
t
'
'
'
t
'
'
'
'
i
i
i
i
i
1
1
1
! '
1
!
1
'
'
'
'
'
t
t
'
t
'
'
'
i
i
i

)

. E= 1

Use BREAK(514) to escape from a FOR-NEXT loop. Several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops. The remaining instructions in the loop after BREAK(514) are processed

as NOP(000) instructions.

FOR \ — FOR
&3 I Escapes from &3
i loop when
o / condition a is
a Pl Remaining 82
Dl instructions are Breaks FOR-NEXT loop 2.
H processed as /
————Twea] f] NOPOOL 1Ry [anen]
-
/ Breaks FOR-NEXT loop 1.

o]
e]

Alternative Looping Methods
There are two ways to repeat a program section until a given execution condi-

tion is input.
1,2,3... 1. FOR-NEXT Loop with BREAK
Start a FOR-NEXT loop with a maximum of N repetitions. Program
BREAK(514) within the loop with the desired execution condition. The loop
will end before N repetitions if the execution condition is input.

165

Sequence Control Instructions Section 3-4

2. JME(005)-JMP(004) Loop
Program a loop with JME(005) before JMP(004). The instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execu-
tion condition for JMP(004) is OFF. (A Cycle Time Too Long error will occur
if the execution condition is not turned ON or END(001) is not executed
within the maximum cycle time.)

Flags

Name Label Operation
Error Flag ER ON if more than 15 loops are nested.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Precautions Program FOR(512) and NEXT(513) in the same task. Execution will not be
repeated if these instructions are not in the same task.

A jump instruction such as JMP(004) may be executed within a FOR-NEXT
loop, but do not jump beyond the FOR-NEXT loop.

The following instructions cannot be used within FOR-NEXT loops:
* Block programming instructions
* MULTIPLE JUMP and JUMP END: JMP(515) and JME(516)
» STEP DEFINE and STEP START: STEP(008)/SNXT(009)

Note If aloop repeats in one cycle and a differentiated bit is used in the FOR-NEXT
loop, that bit will be always ON or always OFF within that loop.

Example In the following example, the looped program section transfers the content of
D100 to the address indicated in D200 and then increments the content of
D200 by 1.

FOR

&3 Repeated 3 times.

A MoV

: I ++ I D100 7

R S .
e)] o200 [o000]

3-4-10 BREAK LOOP: BREAK(514)

Purpose Programmed in a FOR-NEXT loop to cancel the execution of the loop for a
given execution condition. The remaining instructions in the loop are pro-
cessed as NOP(000) instructions.

Ladder Symbol

— BREAK(514)

166

Section 3-4

BREAK(514)

Sequence Control Instructions

Not supported

Variations
Variations

Executed Each Cycle for ON Condition

Executed Once for Upward Differentiation
Not supported

Not supported

Executed Once for Downward Differentiation

Immediate Refreshing Specification

Interrupt tasks

Applicable Program Areas

Description

Flags

Precautions

Subroutines

OK

Block program areas

Step program areas
OK

OK

Not allowed
Program BREAK(514) between FOR(512) and NEXT(513) to cancel the
FOR-NEXT loop when BREAK(514) is executed. When BREAK(514) is exe-

cuted, the rest of the instructions up to NEXT(513) are processed as

NOP(000).

N repetitions

[l
]
1
1
]
1
!
]
]
' .
1
1
1
]
1
'
It

-—

Condition a ON

Repetitions
forced to end.

Processed as NOP(000).

Name Label Operation
Error Flag ER OFF
Equals Flag = OFF
Negative Flag N OFF
A BREAK(514) instruction cancels only one loop, so several BREAK(514)

instructions (the number of levels nested) are required to escape from nested

loops.
BREAK(514) can be used only in a FOR-NEXT loop.

167

Timer and Counter Instructions

Section 3-5

3-5 Timer and Counter Instructions

This section describes instructions used to define and handle timers and

counters.
Instruction Mnemonic Function code Page

TIMER TIM/TIMX ---/550 170
HIGH-SPEED TIMER TIMH/TIMHX 015/551 174
ONE-MS TIMER TMHH/TIMHHX | 540/552 178
ACCUMULATIVE TIMER TTIM/TTIMX 087/555 181
LONG TIMER TIMU/TIMLX 542/553 184
MULTI-OUTPUT TIMER MTIM/MTIMX 543/554 187
COUNTER CNT/CNTX ---/546 193
REVERSIBLE COUNTER CNTR/CNTRX [012/548 196
RESET TIMER/COUNTER CNR/CNRX 545/547 200

Refresh Methods for Timer/Counter PV

168

m Overview

The refresh method for present values timer and counter instructions can be
set to either BCD or binary for CP-series CPU Units.

Using binary data instead of BCD allows the SV range for timers and counter
to be increased from 0 to 9999 to 0 to 65535. It also enables using binary data
calculated with other instructions directly as a timer/counter SV. The refresh
method is valid even when setting an SV indirectly (i.e., using the contents of
memory word). (That is, the contents of the addressed word is taken as either

BCD or binary data according to the refresh method that is set.)

Refer to the CP Series CP1H Operation Manual for details on refresh meth-

ods.

m Applicable Instructions

Classification Instruction Mnemonic
BCD Binary
Timer/counter TIMER TIM TIMX(550)
instructions HIGH-SPEED TIMER TIMH(015) | TIMHX(551)
ONE-MS TIMER TMHH(540) | TMHHX(552)
ACCUMULATIVE TIMER TTIM(087) | TTIMX(555)
LONG TIMER TIML(542) | TIMLX(553)
MULTI-OUTPUT TIMER MTIM(543) | MTIMX(554)
COUNTER CNT CNTX(546)
REVERSIBLE COUNTER CNTR(012) | CNTRX(548)
RESET TIMER/COUNTER CNR(545) | CNRX(547)
Block programming | TIMER WAIT TIMW(813) | TIMWX(816)
instructions HIGH-SPEED TIMER WAIT | TMHW(815) | TMHWX(817)
COUNTER WAIT CNTW(814) |CNTWX(818)

Timer and Counter Instructions

Section 3-5

Timer Operation

for TOO0O to TOO15.
(2) TIMH(015)/TIMHX(551) PVs are refreshed at execution for all times and

also every 10 ms for TOO0O to TO015.

Basic Timer The following table shows the basic specifications of the timers.
Specifications

ltem TIM/TIMX(550) | TIMH(015)/ TMHH(540)/ TTIM(087)/ TIML(542)/ MTIM(543)/

TIMHX(551) TMHHX(552) TTIMX(555) TIMLX(553) MTIMX(554)
Timing Decrementing | Decrementing | Decrementing | Incrementing Decrementing Incrementing
method
Timing units |0.1s 0.01s 0.001s 0.1s 0.1s 0.1s
Max. SV TIM: 999.9 s TIMH: 99.99s |TMHH: 9.999s |TTIM:999.9s |TIML: 115days |MTIM: 999.9 s
TIMX: 6,553.5 | TIMHX: TMHHX: TTIMX: TIMLX: MTIMX:
s 655.35 s 65.535 s 6,553.5 s 49,710 days 6,553.5 s
Outputs/ 1 1 1 1 1 8
instruction
Timer num- | Used Used Used Used Not used Not used
bers
Comp. flag At execution At execution By interrupt At execution At execution At execution
refreshing every 1 ms
Timer PV See note 1. See note 2. Every 1 ms At execution At execution At execution
refreshing
Value | Comp. | OFF OFF OFF OFF OFF OFF
after |flags
reset [pys [sv sV sv 0 sV 0
Note (1) TIM PVs are refreshed at execution for all times and also every 100 ms

The following table shows the effects of operating and programming condi-
tions on the operation of the timers.

Completion Flag = OFF

Item TIM/ TIMH(015)/ | TMHH(540)/ | TTIM(087)/ TIML(542)/ MTIM(543)/
TIMX(550) | TIMHX(551) | TMHHX(552) | TTIMX(555) | TIMLX(553) MTIMX(554)
Operating mode change [PV =0

Power interrupt/reset

PV =0

Completion Flag = OFF

Execution of CNR(545)/
CNRX(547)

Binary: PV = FFFF, Completion Flag = OFF
BCD: PV = FFFF or 9999, Completion Flag = OFF

Not applicable

Not applicable

gram section

Operation in jumped pro-

(JMP(004)-JME(005))

Operating timers continue timing.

Timer status is

maintained.

Operation in interlocked | PV =SV Timer status | PV =SV Timer status
program section Completion Flag = OFF maintained. |[Comp. flag= |maintained.
(IL(002)-ILC(003)) OFF

Forced Comp. flags |ON

set PVs Set to 0.

Forced Comp. flags |OFF

reset PVs Reset to SV. Set to 0. -

169

Timer and Counter Instructions Section 3-5

3-5-1 TIMER: TIM/TIMX(550)
Purpose TIM or TIMX(550) operates a decrementing timer with units of 0.1-s. The set-
ting range for the set value (SV) is 0 to 999.9 s for TIM and 0 to 6,553.5 s for
TIMX(550). The timer accuracy is 0 to 0.01 s.
Ladder Symbol
PV Symbol Operands
refresh
method
BCD N: 0000 to 4095 (decimal)
TIM S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 4095 (decimal)
| TIMX(550) S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations
Variations Executed Each Cycle for ON Condition TIM/TIMX(550)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK OK Not allowed

Operands

Operand Specifications

170

N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).
(If the set value is set to #0000, the Completion Flag will be turned ON when
TIM/TIMX(550) is executed.)

Area N S
CIO Area CIO0to ClO 6143
Work Area - WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area 0000 to 4095 (decimal) TO000 to T4095
Counter Area --- C0000 to C4095
DM Area - DO to D32767
Indirect DM addresses | --- @ DO to @ D32767
in binary
Indirect DM addresses | --- *DO0 to *D32767
in BCD

Timer and Counter Instructions Section 3-5

Description

Flags

Area N S

Constants BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)
Data Registers DRO to DR15
Index Registers --- -
Indirect addressing IR0 t0 ,IR15

using Index Registers | _5048 to +2047 ,IR0 to 2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIM/TIMX(550) starts decrement-
ing the PV. The PV will continue timing down as long as the timer input
remains ON and the timer's Completion Flag will be turned ON when the PV
reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MQOV(021), for example).

Timer input

Timer PV

Completion ON
Flag OFF

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

. . ON
Timer input OFF

Timer PV

Completion ON
F|ag OFF

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.

ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag OFF or unchanged

Negative Flag N OFF or unchanged

171

Timer and Counter Instructions Section 3-5

Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 16 to 4095 will not operate properly when
the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Condition PV Completion Flag

Operating mode changed from RUN or | 0000 OFF
MONITOR mode to PROGRAM mode

or vice versa.'

Power supply interrupted and reset? 0000 OFF
Execution of CNR(545)/CNRX(547), BCD: 9999 OFF
the RESET TIMER/COUNTER Binary: FFFF

instructions®

Operation in interlocked program sec- |Reset to SV. OFF
tion

(IL(002)-ILC(003))

Operation in jumped program section | PV continues decre- | Retains previous sta-
(JMP(004)-JME(005)) menting. tus.

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIM/TIMX(550) is executed.

When TIM/TIMX(550) is in a program section between IL(002) and ILC(003)
and the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When an operating TIM/TIMX(550) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CJMP(510),
CJPN(511), JME(005)), the timer's PV will continue timing. The jumped TIM/
TIMX(550) instruction will not be executed, but the PV will be refreshed each
cycle after all tasks have been executed.

When a TIM/TIMX(550) timer is forced set, its Completion Flag will be turned
ON and its PV will be set to 0. When a TIM/TIMX(550) timer is forced reset, its
Completion Flag will be turned OFF and its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

172

Timer and Counter Instructions Section 3-5

The timer's Completion Flag is refreshed only when TIM/TIMX(550) is exe-
cuted, so a delay of up to one cycle may be required for the Completion Flag
to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIM/TIMX(550) <> TIMH(015)/TIMHX(551) or
TIM/TIMX(550) <> TMHH(540)/TMHHX(552)), be sure to reset the Comple-
tion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIM/TIMX(550) instruction’s PV and Completion Flag can be refreshed in
the following ways depending on the timer number that is used.

Timers Created with Timer Numbers 0000 to 2047
Execution of TIM/ The PV is updated every time that TIM/TIMX(550) is exe-
TIMX(550) cuted.

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

100-ms interval refreshing | If the cycle time exceeds 100 ms, the timer’s PV is
updated every 100 ms.

Timers Created with Timer Numbers T0016 to T4095

Execution of TIM The PV is updated every time that TIM is executed.

The Completion Flag is turned ON if the PV is 0.
The Completion Flag is turned OFF if the PV is not 0.

Timers are reset (PV = SV, Completion Flag OFF) by power interruptions
unless the IOM Hold Bit (A500.12) is ON and the bit is protected in the PLC
Setup. It is also possible use a clock pulse bit and a counter instruction to pro-
gram a timer that will retain its PV in the event of a power interruption, as
shown in the following diagram.

Execution 1-s clock
condition pulse bit

N I Count input
1l 1l CNT
N
Reset input S
1

173

Timer and Counter Instructions Section 3-5

Example When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV. Timer Completion Flag TO000
will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

~0.00
i} TIM

0000
#100

Timer input ON
Cl00.00 OFF]]

' '
'

0100, [
Timer PV g,t’F] ~—
T0000 |

|
' ' '
| | i
'
'

: ON
Timer ! I l
Completion OFF
Flag
TO000

3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)

Purpose TIMH(015)/TIMHX(551) operates a decrementing timer with units of 10-ms.
The setting range for the set value (SV) is 0 to 99.99 s for TIMH(015) and 0 to
655.35 s for TIMHX(551). The timer accuracy is 0 to 0.01 s.

Ladder Symbol
PV Symbol Operands
refresh
method
BCD N: 0000 to 4095 (decimal)
— | TIMH(015) S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 4095 (decimal)
| TIMHX(551) S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations
Variations Executed Each Cycle for ON Condition TIMH(015)/
TIMHX(551)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Applicable Program Areas
Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK OK Not allowed

174

Timer and Counter Instructions Section 3-5

Operands N: Timer Number
The timer number must be between 0000 and 4095 (decimal).

S: Set Value
The set value must be between #0000 and 9999 in BCD mode.

Operand Specifications

Area N S

CIO Area ClO0to ClO 6143

Work Area --- WO to W511

Holding Bit Area HO to H511

Auxiliary Bit Area A0 to A959

Timer Area 0000 to 4095 (decimal) TO000 to T4095

Counter Area - C0000 to C4095

DM Area --- DO to D32767

Indirect DM addresses | --- @ DO to @ D32767

in binary

Indirect DM addresses | --- *DO0 to *D32767

in BCD

Constants BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers DRO to DR15

Index Registers

Indirect addressing IR0 to0 ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMH(015)/TIMHX(551) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer's Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MQOV(021), for example).

]) ON
Timer input oFf

Timer PV

Completion ON
Flag OFF

175

Timer and Counter Instructions Section 3-5

The following timing chart shows the behavior of the timer's PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

. . ON
Timer input qpg

Timer PV i’,m‘
0

Completion ON

Flag OFF
Flags
Name Label Operation
Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.
Equals Flag = OFF or unchanged
Negative Flag N OFF or unchanged
Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),

TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 16 to 4095 will not operate properly when
the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

TIMH(015)/TIMHX(551) timers created with timer numbers 0 to 15 are
refreshed every 10 ms. Use these timer numbers when the PV is being refer-
enced in the user program.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Condition PV Completion Flag
Operating mode changed from RUN or 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.'
Power supply interrupted and reset? 0000 OFF

Execution of CNR(545)/CNRX(547), the |BCD: 9999 OFF
RESET TIMER/COUNTER instructions® | Binary: FFFF

Operation in interlocked program section |Resetto SV. |OFF
(IL(002)-ILC(003))

Operation in jumped program section PV continues | Retains previous status.
(JMP(004)-JME(005)) decrementing.

176

Timer and Counter Instructions Section 3-5

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIMH(015)/TIMHX(551) is executed.
When an operating TIMH(015)/TIMHX(551) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CJMP(510),
CJPN(511), JME(005)), the timers PV will continue timing. (The jumped
TIMH(015)/TIMHX(551) instruction will not be executed, but the PV will be
refreshed every 10 ms and each cycle after all tasks have been executed.)

When TIMH(015)/TIMHX(551) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TIMH(015)/TIMHX(551) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0. When a TIMH(015)/TIMHX(551)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to the SV.

The operation of the = Flag and N Flag depends or the model of CPU Unit.
Refer to Flags for details.

The timer's Completion Flag is refreshed only when TIMH(015)/TIMHX(551)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIMH(015)/TIMHX(551) <> TIM/TIMX(550) or
TIMH(015)/TIMHX(551) <> TMHH(540)/TMHHX(552)), be sure to reset the
Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

A TIMH(015)/TIMHX(551) instruction’s PV and Completion Flag can be
refreshed in the following ways depending on the timer number that is used.

Timers Created with Timer Numbers T0000 to T0015

Execution of The Completion Flag is turned ON if the PV is 0000.
TIMH(015)/ The Completion Flag is turned OFF if the PV is not 0000.
TIMHX(551)

10-ms interval The timer’s PV is updated every 10 ms.

refreshing

Timers Created with Timer Numbers T0016 to T4095

Execution of The PV is updated every time that TIMH(015) is executed.
TIMH(015)/ The Completion Flag is turned ON if the PV is 0.
TIMHX(551) The Completion Flag is turned OFF if the PV is not 0.

177

Timer and Counter Instructions

Section 3-5

Example

When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV (#0064 = 100 = 1.00 s). The
Timer Completion Flag, TO000, will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

TIMH
0000
#0100

Timer input

ON

CIlO 0.00 OFF
Timer PV

#0100
TO000

(1.00s) o
Timer Completion
Flag
TO000 OFF

100 T

3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)

TMHH(540)/TMHHX(552) operates a decrementing timer with units of 1-ms.
The setting range for the set value (SV) is 0 to 9.999 s for TMHH(540) and 0
to 65.535 for TMHHX(552). The timer accuracy is —0.001 to 0 s.

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

178

PV Symbol Operands
refresh
method
BCD N: 0000 to 15 (decimal)
| TMHH(540) S: #0000 to #9999 (BCD)
N N: Timer number
S S: Set value
Binary N: 00000 to 15 (decimal)
| TMHHX(552) S: &0 to &65535 (decimal)
#0000 to #FFFF (hex)
N N: Timer number
S S: Set value
Variations Executed Each Cycle for ON Condition TMHH(540)/
TMHHX(552)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Block program areas

Step program areas

Subroutines

Interrupt tasks

Not allowed

OK

OK

Not allowed

N: Timer Number
The timer number must be between 0000 and 0015 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Timer and Counter Instructions

Section 3-5

Operand Specifications

Description

Flags

Precautions

Area N S
CIO Area CIO0to CIO 6143
Work Area --- WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area 0000 to 0015 (decimal) TO00O0 to T4095
Counter Area - C0000 to C4095
DM Area --- DO to D32767
Indirect DM addresses | --- @ DO to @ D32767
in binary
Indirect DM addresses | --- *DO0 to *D32767
in BCD
Constants BCD:

#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DRO to DR15
Index Registers

Indirect addressing IR0 to ,IR15

using Index Registers | _2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMHH(540)/TMHHX(552) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer's Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MQOV(021), for example).

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

179

Timer and Counter Instructions Section 3-5

The Completion Flag is updated only when TMHH(540)/TMHHX(552) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Condition PV Completion Flag
Operating mode changed from RUN or | 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.'
Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the |BCD: 9999 OFF
RESET TIMER/COUNTER instructions® | Binary: FFFF

Operation in interlocked program section | Resetto SV. |OFF
(IL(002)-ILC(003))

Operation in jumped program section PV continues | Retains previous status.
(JMP(004)-JME(005)) decrement-
ing.

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TMHH(540)/TMHHX(552) is executed.

When an operating TMHH(540)/TMHHX(552) timer is in a jumped program
section (JMP(004), CJMP(510), CJPN(511), JME(005)), the timers PV will
continue timing. (The jumped TMHH(540)/TMHHX(552) instruction will not be
executed, but the PV will be refreshed every 1 ms.)

When TMHH(540)/TMHHX(552) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TMHH(540)/TMHHX(552) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0000. When a TMHH(540)/
TMHHX(552) timer is forced reset, its Completion Flag will be turned OFF and
its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TMHH(540)/TMHHX(552) <> TIM/TIMX(550) or
TMHH(540)/TMHHX(552) <> TIMH(015)/TIMHX(551)), be sure to reset the

Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

180

Timer and Counter Instructions

Section 3-5

3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)

Purpose

Ladder Symbol

Variations

Applicable Program Areas

Operands

Operand Specifications

A TMHH(540)/TMHHX(552) instruction’s PV and Completion Flag are
refreshed as shown in the following table.

Execution of
TMHH(540)/
TMHHX(552)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

1-ms interval refreshing

The timer’s PV is updated every 1 ms.

TTIM(087)/TTIMX(555) operates an incrementing timer with units of 0.1-s.
The setting range for the set value (SV) is 0 to 999.9 s for TTIM(087) and 0 to
6,553.5 s for TTIMX(555). The timer accuracy is —=0.01t0 0 s.

PV Symbol Operands
refresh
method
BCD)) N: 0000 to 15
Timer input —{ 7TIM(087) (decimal)
) S: #0000 to #9999
N N: Timer number (BCD)
S S: Set value
Reset input 1
Binary) . N: 00000 to 15
Timer input — TTIMX(555) (decimal)
S: &0 to &65535
N N: Timer number (decimal)
#0000 to #FFFF
S S: Set value (hex)
Reset input 1
Variations Executed Each Cycle for ON Condition TTIM(087)/
TTIMX(555)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.
Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK Not allowed
N: Timer Number
The timer number must be between 0000 to 4095 (decimal).
S: Set Value
The set value must be between #0000 and 9999 (BCD).
Area N S
CIO Area CIO0to ClIO 6143
Work Area -—- WO to W511
Holding Bit Area HO to H511
Auxiliary Bit Area A0 to A959
Timer Area 0000 to 4095 (decimal) TO000 to T4095

181

Timer and Counter Instructions Section 3-5

Description

Flags

Precautions

182

Area N S

Counter Area C0000 to C4095

DM Area --- DO to D32767

Indirect DM addresses | --- @ DO to @ D32767

in binary

Indirect DM addresses | --- *DO0 to *D32767

in BCD

Constants BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DRO to DR15

Index Registers --- ---

Indirect addressing ,IRO to ,IR15

using Index Registers | _2048 to +2047 IR0 to —2048 to +2047 ,IR15

DRO to DR15, IR0 to IR15

When the timer input is ON, TTIM(087)/TTIMX(555) increments the PV. When
the timer input goes OFF, the timer will stop incrementing the PV, but the PV
will retain its value. The PV will resume timing when the timer input goes ON
again. The timer's Completion Flag will be turned ON when the PV reaches
the SV.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. There are three ways to restart the timer: the timer's PV can
be changed to a non-zero value (by MOV(021), for example), the reset input
can be turned ON, or CNR(545)/CNRX(547) can be executed.

' . ON
Timer input off

Timer PV SV

— Timing resumes.

— PV maintained.

Completion on
Flag OFF

ey

. ON
Reset input org

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.

ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.

Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timer and Counter Instructions Section 3-5

Example

Note

Timers will be reset or paused in the following cases. (When a TTIM(087)/
TTIMX(555) timer is reset, its PV is reset to 0000 and its Completion Flag is

turned OFF.)

Condition PV Completion Flag
Operating mode changed from RUN or | 0000 OFF
MONITOR mode to PROGRAM mode or
vice versa.'
Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the |BCD: 9999 OFF
RESET TIMER/COUNTER instructions® |Binary: FFFF

Operation in interlocked program section | Retains previ- | Retains previous status.

(IL(002)-ILC(003)) ous status.
Operation in jumped program section Retains previ- | Retains previous status.
(JMP(004)-JME(005)) ous status.

(1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TTIM(087)/TTIMX(555) is executed.

When TTIM(087)/TTIMX(555) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between IL(002) and ILC(003).

When an operating TTIM(087)/TTIMX(555) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between JMP(004) and JME(005).

When a TTIM(087)/TTIMX(555) timer is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a TTIM(087)/TTIMX(555)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to 0000. The forced set and forced reset operations take priority over the
status of the timer and reset inputs.

The timer's PV is refreshed only when TTIM(087)/TTIMX(555) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer's Completion Flag is refreshed only when TTIM(087)/TTIMX(555) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

Typical timers such as TIM/TIMX(550) are decrementing counters and the PV
shows the time remaining until the timer times out. The PV of TTIM(087)/
TTIMX(555) shows how much time has elapsed, so the PV can be used
unchanged in many calculations and display outputs.

When timer input CIO 0.00 is ON in the following example, the timer PV will
begin counting up from 0. Timer Completion Flag TO001 will be turned ON
when the PV reaches the SV.

If the reset input is turned ON, the timer PV will be reset to 0000 and the Com-
pletion Flag (TO001) will be turned OFF. (Usually the reset input is turned ON
to reset the timer and then the timer input is turned ON to start timing.)

183

Timer and Counter Instructions

Section 3-5

Timer input
ClO 0.00

Timer PV
TOO001

Timer Completion 0

Flag
TO001

Reset input
ClO 0.01

If the timer input is turned OFF before the SV is reached, the timer will stop
timing but the PV will be maintained. The timer will resume from its previous
PV when the timer input is turned ON again.

0.00
I
I

TTIM

0001

#100

—0|.O1 |—

ON
OFF

ON g
OFF

ON
OFF

ON
OFF

3-5-5 LONG TIMER: TIML(542)/TIMLX(553)

Purpose

Ladder Symbol

Variations

184

- Timing resumes.

PV maintained.

TIML(542)/TIMLX(553) operates a decrementing timer with units of 0.1 s that
can time up to 115 days for TIML(542) and 4,971 days for TIMLX(543). The
timer accuracy is 0 to —0.01 s.

BCD
| TIML(542)
D1 D1: Completion Flag
D2 D2: PV word
S S: SV word
Binary
— | TIMLX(543)
D1 D1: Completion Flag
D2 D2: PV word
S S: SV word
Variations Executed Each Cycle for ON Condition TIML(542)/
TIMLX(553)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Timer and Counter Instructions Section 3-5

Applicable Program Areas

Operands

Operand Specifications

Block program areas | Step program areas | Subroutines | Interrupt tasks
Not allowed OK OK Not allowed

D1: Completion Flag
Bit 0 of D1 acts as the Completion Flag for TIML(542)/TIMLX(553).

15 0
D1 |]

L Do not use. L

Completion Flag

D2: PV Word

D2+1 and D2 contain the 8-digit binary or BCD PV. (D2 and D2+1 must be in
the same data area.) The PV can range from #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967295 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

D2 D2+1 D2
I ' | | i |

S: SV Word

S+1 and S contain the 8-digit binary or BCD SV. (S and S+1 must be in the
same data area.) The SV must be between #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

S S+1 S
Area D1 D2 S
CIO Area ClO0to ClIO0to ClO 6142
ClO 6143

Work Area WO to W511 WO to W510

Holding Bit Area HO to H511 HO to H510

Auxiliary Bit Area A448 to A959 A448 to A958 A0 to A958

Timer Area - - TO0O0O0 to T4094

Counter Area C0000 to C4094

DM Area DO to D32767 DO to D32766

Indirect DM addresses | @ DO to @ D32767

in binary

Indirect DM addresses | *DO0 to *D32767

in BCD

Constants BCD:
#00000000 to
99999999 (BCD)
“&” cannot be
used.
Binary:
&00000000 to
&4294967295
(decimal) or
#00000000 to
#FFFFFFFF (hex)

Data Registers

185

Timer and Counter Instructions Section 3-5

Description

Flags

Precautions

186

Area D1 D2 | S
Index Registers
Indirect addressing IR0 t0 ,IR15

using Index Registers | _o048 to +2047 ,IR0 to 2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

TIML(542)/TIMLX(553) is a decrementing ON-delay timer with units of 0.1-s
that uses an 8-digit SV and an 8-digit PV.

When the timer input is OFF, the timer is reset, i.e., the timer’s PV is reset to
the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIML(542)/TIMLX(553) starts
decrementing the PV in D2+1 and D2. The PV will continue timing down as
long as the timer input remains ON and the timer's Completion Flag will be
turned ON when the PV reaches 0000 0000.

The status of the timer's PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer's PV must be changed to a non-zero value (by
MOQOV(021), for example).

Timer input

Timer PV

Completion Flag ON
(Bit 00 of D1) OFF

Name Label Operation

Error Flag ER ON if BCD was specified and the PV contained in D2+1
and D2 is not BCD.

ON if the SV contained in S+1 and S is not BCD.
OFF in all other cases.

Unlike most timers, TIML(542)/TIMLX(553) does not use a timer number.
(Timer area PV refreshing is not performed for TIML(542)/TIMLX(553).)
Since the Completion Flag for TIML(542)/TIMLX(553) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

The timer's PV is refreshed only when TIML(542)/TIMLX(553) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer's Completion Flag is refreshed only when TIML(542)/TIMLX(553) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When TIML(542)/TIMLX(553) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When an operating TIML(542)/TIMLX(553) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TIML(542)/TIMLX(553) is programmed between JMP(004) and JME(005).

Timer and Counter Instructions Section 3-5

Be sure that the words specified for the Completion Flag and PV (D1, D2, and
D2+1) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

Example When timer input CIO 0.00 is ON in the following example, the timer PV (in
D101 and D100) will be set to the SV (in D201 and D200) and the PV will
begin counting down. The timer Completion Flag (ClIO 200.00) will be turned
ON when the PV reaches 0000 0000.

When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

0.00
TIML
D1 200 Timer input
CIO 0.00
D2 D100
S D200 Timer PV

(D101 and D100)

Timer SV:
(D201 and D200)

Timer Completion ON

Flag OFF
(CIO 200.00)
1514131211109 8 7 6 54 3 2 1 0
prioo L[IITTITIIIITTI]]
Timer Completion
Flag
(CIO 200.00)
15 0
D2: D100 Timer's PV (LSB)
D101 Timer's PV (MSB)
1514131211109 8 7 6 5432 1 0
S: D200 0 0 0 0 Timer SV:
D201 0 0 1 0 (100,000 decimal= 10,000 s)

3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)

Purpose MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with eight inde-
pendent SVs and Completion Flags. The set value is 0 to 999.9 s for
MTIM(543) and 0 to 6,553.5 s for MTIMX(554), and the timer accuracy is 0 to

0.01s.
Ladder Symbol BCD
— MTIM(543)
D1 D1: Completion Flags
D2 D2: PV word
S S: First SV word

187

Timer and Counter Instructions Section 3-5

Binary
— | MTIMX(554)
D1 D1: Completion Flags
D2 D2: PV word
S S: First SV word
Variations
Variations Executed Each Cycle for ON Condition MTIM(543)/
MTIMX(554)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas | Subroutines | Interrupt tasks

Not allowed OK OK Not allowed
Operands D1: Completion Flags
D1 contains the eight Completion Flags as well as the pause and reset bits.
15 9 87654 32 10
o1 | ERERRRENEN
L Do not use. \;
Completion Flags
Reset bit
—— Pause bit
D2: PV Word
D2 contains the 4-digit binary or BCD PV.
Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

S: First SV Word

S through S+7 contain the eight independent SVs.
Each SV must be as follows:

Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Corresponding bit
(Completion Flag) in D1

S | : | — -0
S+1 ' | — 1
S+2 — 2
S+7 —7

188

Timer and Counter Instructions

Section 3-5

Note

Operand Specifications

Description

Data Range
BCD One word for each of 8 timer SV:
#0000 to #9999
Binary One word for each of 8 timer SV:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

S through S+7 must be in the same data area.

Area D1 | D2 s

CIO Area ClO0to ClO 6143 ClOO0to
ClO 6136

Work Area WO to W511 WO to W504
Holding Bit Area HO to H511 HO to H504
Auxiliary Bit Area A448 to A959 AOQ to A952
Timer Area TOO00O0 to T4095 TOO00O0 to T4088
Counter Area C0000 to C4095 C0000 to C4088
DM Area DO to D32767 DO to D32760
Indirect DM addresses in @ DO to @ D32767
binary
Indirect DM addresses in BCD | *D0 to *D32767
Constants

Data Registers DRO to DR15

Index Registers

Indirect addressing using ,IRO to ,IR15

Index Registers —2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

JRO+(++) to ,IR15+(++)

—~(= -)IRO to, (- -)IR15

When the execution condition for MTIM(543)/MTIMX(554) is ON and the reset
and timer bits are both OFF, MTIM(543)/MTIMX(554) increments the PV in
D2. If the pause bit is turned ON, the timer will stop incrementing the PV, but
the PV will retain its value. MTIM(543)/MTIMX(554) will resume timing when
the pause bit goes OFF again.

The PV (content of D2) is compared to the eight SVs in S through S+7 each
time that MTIM(543)/MTIMX(554) is executed, and if any of the SVs is less
than or equal to the PV, the corresponding Completion Flag (D1 bits 00
through 07) is turned ON.

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF. If the reset bit is turned ON while the timer is
operating or paused, the PV will be reset to 0000 and all of the Completion
Flags will be turned OFF.

189

Timer and Counter Instructions Section 3-5

Flags

Precautions

190

Timer PV
D2| |
Timer SVs —I
s —_— 0
S+1 — 1
S+2 — 2
to to
S+7 — 7
ON
Timer input OFF
T A
Sv2
TimerPV (D2) SV1 1T~
Completion
flags (D1)

The following table shows the operation of MTIM(543)/MTIMX(554) for the
four possible combinations of the reset and pause bits.

Reset bit | Pause bit Operation
(Bit 08) (Bit 09)
OFF OFF The PV will be updated and the corresponding Completion
Flag will be turned ON when SV < PV.
ON The PV will not be updated and MTIM(543)/MTIMX(554)
will be treated as NOP(000).
ON OFF The PV will be reset to 0000 and the Completion Flags will
ON be turned OFF. The PV will not be updated.

The reset and pause bits are effective only when the execution condition for
MTIM(543)/MTIMX(554) is ON.

Name Label Operation

Error Flag ER ON if the PV contained in D2 is not BCD.

OFF in all other cases.

Unlike most timers, MTIM(543)/MTIMX(554) does not use a timer number.
(Timer area PV refreshing is not performed for MTIM(543)/MTIMX(554).)
When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF.

If in BCD mode and an SV in S through S+7 does not contain BCD data, that
SV will be ignored. An error will not occur and the Error Flag will not be turned
ON.

Since the Completion Flag for MTIM(543)/MTIMX(554) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

Timer and Counter Instructions Section 3-5

Example

When eight or fewer SVs are required, set the word after the last SV to 0000.
MTIM(543)/MTIMX(554) will ignore the SV that is set to 0000 and all of the
remaining SVs.

SCH 0002CH
0003CH
0004CH
0005CH !

to to

S+7CH 0009CH

olo|v]|=
ojlojlo|o
ol~|ON
olo|o |

These SVs
are ignored.

The timer's PV is refreshed only when MTIM(543)/MTIMX(554) is executed,
so the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units. To ensure precise timing and
prevent problems caused by long cycle times, input the same MTIM(543)/
MTIMX(554) instruction at several points in the program.

The timer's Completion Flag is refreshed only when MTIM(543)/MTIMX(554)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When MTIM(543)/MTIMX(554) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between IL(002) and ILC(003).
When an operating MTIM(543)/MTIMX(554) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between JMP(004) and JME(005).
Be sure that the words specified for the Completion Flags and PV (D1 and
D2) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

If a word in the CIO area is specified for D1, the SET and RSET instructions
can be used to control the pause and reset bits.

When CIO 0.00 is ON and the pause bit (CIO 200.09) is OFF in the following
example, the timer will start operating when the reset bit (CIO 200.08) is
turned from ON to OFF. The timer’s PV will begin timing up from 0000.

The eight SVs in D200 through D207 are compared to the PV and the corre-
sponding Completion Flags (CIO 200.00 through CIO 200.07) are turned ON
when the SV < PV.

191

Timer and Counter Instructions

Section 3-5

192

0.00

I—.

MTIM

D1

200

D2

D100

S

D200

Timer input
CIlO 0.00

Reset bit
CI0 200.08

Pause bit
CIO 200.09

Max. PV = 9999

Timer SVs
Sv7

SV 1
SV 0

Completion FI
ompletion Flags |

200.00

200.01

200.07

OFF

OFF

ON
OFF

D1:200

Timer PV

D2:

D100

15 9876543210

[™

ompletion Flags

Timer SVs 15

S:
S+1:
S+2:
S+3:
S+4:
S+5:
S+6:
S+7:

D200
D201
D202
D203
D204
D205
D206
D207

Corresponding completion
flag ON when SV < PV.

Reset bit
Pause bit
15 0 (Incrementing)

0 1 0 |
0 0 8 0 —~ | 1|0
0 0 9 0 — | 1 |1
0 1 0 0 .| 1]2
0 1 1 0 — .| 0|3
0 1 2 0 — 0 |4
0 1 3 0 0|5
0 1 5 0 .| 0|6
1 0 0 0 — .| 0|7

L Timer input must remain ON
while the timer is timing.

Timing resumes.

PV maintained.,

Timer and Counter Instructions Section 3-5

3-5-7 COUNTER: CNT/CNTX(546)

Purpose CNT/CNTX(546) operates a decrementing counter. The setting range 0 to
9,999 for CNT and 0 to 65,535 for CNTX(546).
Ladder Symbol BCD
Count input ——— CNT
N N: Counter number
S S: Set value
Reset input |
Binary
Count input — CNTX(546)
N N: Counter number
S S: Set value

Reset input 1

Variations
Variations Executed Each Cycle for ON Condition CNT/
CNTX(546)
Executed Once for Upward Differentiation Not supported.
Executed Once for Downward Differentiation | Not supported.
Immediate Refreshing Specification Not supported.

Applicable Program Areas

Block program areas | Step program areas Subroutines | Interrupt tasks

Not allowed OK OK OK
Operands N: Counter Number
The counter number must be between 0000 and 4095 (decimal).
S: Set Value
Data Range
BCD #0000 to #9999
Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)
Operand Specifications
Area N S
CIO Area CIO 0to CIO 6143
Work Area - WO to W511
Holding Bit Area | --- HO to H511
Auxiliary Bit A0 to A959
Area
Timer Area --- TO000 to T4095
Counter Area 0000 to 4095 (decimal) C0000 to C4095
DM Area - DO to D32767
Indirect DM @ DO to @ D32767
addresses in
binary

193

Timer and Counter Instructions

Section 3-5

Binary:

Area N S
Indirect DM --- *DO0 to *D32767
addresses in
BCD
Constants BCD:

#0000 to 9999 (BCD)

“&” cannot be used.

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers

- DRO to DR15

Index Registers

Indirect address-
ing using Index
Registers

,IRO to ,IR15
—2048 to +2047 ,IR0 to —2048 to +2047 ,IR15
DRO to DR15, IR0 to IR15

Description The counter PV is decremented by 1 every time that the count input goes from
OFF to ON. The Completion Flag is turned ON when the PV reaches 0.
Once the Completion Flag is turned ON, reset the counter by turning the reset
input ON or by using the CNR(545)/CNRX(547) instruction. Otherwise, the
counter cannot be restarted.
The counter is reset and the count input is ignored when the reset input is ON.
(When a counter is reset, its PV is reset to the