Circuit-breaker, 3p, 25A Part no. NZMN1-A25 Article no. 281232 Similar to illustration | Delivery programme | | | | |---|-----------------------------------|----|-----------------------------| | Product range | | | Circuit-breaker | | Protective function | | | System and cable protection | | Standard/Approval | | | IEC | | Installation type | | | Fixed | | Release system | | | Thermomagnetic release | | Construction size | | | NZM1 | | Number of poles | | | 3 pole | | Standard equipment | | | Box terminal | | Switching capacity | | | | | 400/415 V 50 Hz | I _{cu} | kA | 50 | | Rated current = rated uninterrupted current | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 25 | | Setting range | | | | | Overload trip | | | | | 中 | I _r | Α | 20 - 25 | | Short-circuit releases | | | | | Non-delayed | I _i = I _n x | | 350 A fixed | | Short-circuit releases | | | | | min. | | Α | 350 | ## **Technical data** #### General | delicitat | | | |---|------|--| | Standards | | IEC/EN 60947 | | Protection against direct contact | | Finger and back of hand proof to VDE 0106 Part 100 | | Climatic proofing | | Damp heat, constant, to IEC 60068-2-78
Damp heat, cyclic, to IEC 60068-2-30 | | Ambient temperature | | | | Ambient temperature, storage | °C | - 40 - + 80 | | Operation | °C | -25 - +70 | | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 | g | 20 (half-sinusoidal shock 20 ms) | | Safe isolation to EN 61140 | | | | Between auxiliary contacts and main contacts | V AC | 500 | | between the auxiliary contacts | V AC | 300 | | Mounting position | | Vertical and 90° in all directions | With residual-current release XFI: - NZM1, N1, NZM2, N2: vertical and 90° in all directions 90" in all directions with plug-in adapter elements - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit: - NZM3, N3: vertical, 90° left - NZM4, N4: vertical with remote operator: - NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions | Direction of incoming supply | as required | |--|---| | Degree of protection | | | Device | In the operating controls area: IP20 (basic degree of protection) | | Enclosures | With insulating surround: IP40 With door coupling rotary handle: IP66 | | Terminations | Tunnel terminal: IP10
Phase isolator and strip terminal: IP00 | | Other technical data (sheet catalogue) | Weight Temperature dependency, Derating Effective power loss | | | | | Lifective power 1033 | |---|----------------|------|---| | Circuit-breakers | | | | | Rated current = rated uninterrupted current | $I_n = I_u \\$ | Α | 25 | | Rated surge voltage invariability | U_{imp} | | | | Main contacts | | V | 6000 | | Auxiliary contacts | | V | 6000 | | Rated operational voltage | U _e | V AC | 690 | | Rated operational voltage | U _e | V DC | 500 | | | | | 1) Details apply for 3 pole system protection circuit-breaker with thermomagnetic release NZMN(H)1(2)(3)-A to 500 A. For rated operating voltage switching via 3 contacts: DC correction factor for instantaneous release response value: NZM1: 1.25, NZM2: 1.35, NZM3: 1.45 Set value for I _i at DC = set value I _i AC/correction factor DC Switching of one pole via two series contacts Switching of one pole via three series contacts | | Overvoltage category/pollution degree | | | III/3 | |---------------------------------------|----|---|------------------| | Rated insulation voltage | Ui | V | 690 | | Use in unearthed supply systems | | V | ≦ ₆₉₀ | #### **Switching capacity** | Rated short-circuit making capacity | I _{cm} | | | |---|-----------------|----|-----| | 240 V | I _{cm} | kA | 187 | | 400/415 V | I _{cm} | kA | 105 | | 440 V 50/60 Hz | I _{cm} | kA | 74 | | 525 V 50/60 Hz | I _{cm} | kA | 40 | | 690 V 50/60 H | Ic | kA | 17 | | Rated short-circuit breaking capacity I _{cn} | I _{cn} | | | | Icu to IEC/EN 60947 test cycle 0-t-C0 | Icu | kA | | | 240 V 50/60 Hz | I _{cu} | kA | 85 | | 400/415 V 50/60 Hz | I _{cu} | kA | 50 | | 440 1/ 50/00 1/ | | | or. | |---|--|--------------|--| | 440 V 50/60 Hz | I _{cu} | kA | 35 | | 525 V 50/60 Hz | I _{cu} | kA | 20 | | 690 V 50/60 Hz | I _{cu} | kA | 10 | | 500 V DC | I _{cu} | kA | 15 | | Ics to IEC/EN 60947 test cycle O-t-CO-t-CO | Ics | kA | | | 240 V 50/60 Hz | I _{cs} | kA | 85 | | 400/415 V 50/60 Hz | I _{cs} | kA | 50 | | 440 V 50/60 Hz | I _{cs} | kA | 35 | | | | | | | 525 V 50/60 Hz | I _{cs} | kA | 10 | | 690 V 50/60 Hz | lcs | | 7.5 Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker. | | Utilization category to IEC/EN 60947-2 | | | A | | Rated making and breaking capacity | | | | | Rated operational current | I _e | Α | | | AC-1 | | | | | 380 V 400 V | l _e | A | 25 | | | | | | | 415 V | l _e | A | 25 | | 690 V | l _e | Α | 25 | | AC3 | | | | | 380 V 400 V | I _e | Α | 25 | | 415 V | I _e | Α | 25 | | 660 V 690 V | le | Α | 25 | | DC-1 | , and the second | | | | 500 V DC | 1 | CSA | 25 | | | l _e | USA | 23 | | DC - 3 | | | | | 500 V DC | l _e | CSA | 25 | | Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) | Operations | | 20000 | | Lifespan, electrical | | | | | AC-1 | | | | | 400 V 50/60 Hz | Operations | | 10000 | | 415 V 50/60 Hz | Operations | | 10000 | | 690 V 50/60 Hz | Operations | | 7500 | | AC3 | | | | | 400 V 50/60 Hz | Operations | | 7500 | | 415 V 50/60 Hz | Operations | | 7500 | | 690 V 50/60 Hz | Operations | | 5000 | | DC-1 | | | | | 500 V DC | | Operation | 10000 | | DC - 3 | | o por a tiol | | | 500 V DC | Operations | | 5000 | | | Operations | One'l | | | Max. operating frequency | | | 120 | | Total downtime in a short-circuit | | ms | < 10 | | Terminal capacity Standard equipment | | | Box terminal | | Standard equipment | | | | | Overview | | | Basic equipment Box | | | | | Flat | |---|------|-----------------|--------------------------------------| | | | | conductor | | | | | terminal | | Round copper conductor | | | | | Box terminal | | | | | Solid | | mm ² | 1 x (10 - 16)
2 x (6 - 16) | | Stranded | | mm ² | 1 x (25 - 70)
2 x 25 | | Tunnel terminal | | | | | Solid | | mm^2 | 1 x 16 | | Stranded | | mm^2 | | | Stranded | | mm ² | 1 x (25 - 95) | | Bolt terminal and rear-side connection | | | | | Direct on the switch | | | | | Solid | | mm ² | 1 x (10 - 16)
2 x (10 - 16) | | Stranded | | mm ² | 1 x (25 - 35)
2 x (25 - 35) | | Al conductors, Cu cable | | | | | | | | | | Solid | | mm ² | 1 x 16 | | Stranded | | mm^2 | | | Stranded | | mm ² | 1 x (25 - 95) | | Cu strip (number of segments x width x segment thickness) | | | | | Box terminal | | | | | | min. | mm | 2 x 9 x 0.8 | | | max. | mm | 9 x 9 x 0.8 | | Copper busbar (width x thickness) | mm | | | | Bolt terminal and rear-side connection | | | | | Screw connection | | | M6 | | Direct on the switch | | | | | | min. | mm | 12 x 5 | | | max. | mm | 16 x 5 | | Control cables | | | | | | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 1.5) | ## **Design verification as per IEC/EN 61439** | Design vermoation as per illo/liv 01455 | | | | |--|------------------|----|--| | Technical data for design verification | | | | | Rated operational current for specified heat dissipation | In | Α | 25 | | Equipment heat dissipation, current-dependent | P _{vid} | W | 8.78 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 70 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | Does not apply, since the entire switchgear needs to be evaluated. | |--|--| | 10.6 Incorporation of switching devices and components | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | 10.9.2 Power-frequency electric strength | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | Is the panel builder's responsibility. | | 10.10 Temperature rise | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.12 Electromagnetic compatibility | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.13 Mechanical function | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | #### **Technical data ETIM 6.0** Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation prot. (EC000228) Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss8.1-27-37-04-09 [AJZ716010]) | protection (ceressor 27 07 04 00 [A02710010]) | | | |---|-----|--| | Rated permanent current lu | А | A 25 | | Rated voltage | V | V 690 - 690 | | Rated short-circuit breaking capacity Icu at 400 V, 50 Hz | k.A | kA 50 | | Overload release current setting | А | A 20 - 25 | | Adjustment range short-term delayed short-circuit release | А | A 0 - 0 | | Adjustment range undelayed short-circuit release | А | A 350 - 350 | | Integrated earth fault protection | | No | | Type of electrical connection of main circuit | | Frame clamp | | Device construction | | Built-in device fixed built-in technique | | Suitable for DIN rail (top hat rail) mounting | | No | | DIN rail (top hat rail) mounting optional | | Yes | | Number of auxiliary contacts as normally closed contact | | 0 | | Number of auxiliary contacts as normally open contact | | 0 | | Number of auxiliary contacts as change-over contact | | 0 | | Switched-off indicator available | | No | | With under voltage release | | No | | Number of poles | | 3 | | Position of connection for main current circuit | | Front side | | Type of control element | | Rocker lever | | Complete device with protection unit | | Yes | | Motor drive integrated | | No | | Motor drive optional | | No | | Degree of protection (IP) | | IP20 | | | | | ### Characteristics # 64 63 $M4 \times 50/10$ 44.6 126 SW4 (1) Blow out area, minimum clearance to adjacent parts 30 ## **Additional product information (links)** | Additional product informa- | tion (miks) | | |---|---|--| | IL01203004Z (AWA1230-1913) Circuit-breaker, Switch-Disconnector | | | | IL01203004Z (AWA1230-1913) Circuit-breaker,
Switch-Disconnector | ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL01203004Z2015_11.pdf | | | Weight | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.171 | | | Temperature dependency, Derating | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.172 | | | Effective power loss | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.174 | | | Setting-Specific Representation of Tripping Characteristics and Competent Assessment of their Interaction | http://www.moeller.net/binary/ver_techpapers/ver943en.pdf | | | Busbar Component Adapters for modern Industrial control panels | http://www.moeller.net/binary/ver_techpapers/ver960en.pdf | |