PacT Series
 TransferPacT Active Automatic TransferPacT Automatic

Transfer Switching Equipment
32-160 A
\section*{User Guide}

PacT series offers world class breakers and switches.

DOCA0214EN-00
10/2021

Legal Information

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.

Table of Contents

Safety Information 5
About the Book 6
Introduction to TransferPacT ATSE 7
PacT Series Master Range 8
Overview 9
Hardware Description 10
Accessories 15
Technical Characteristics 16
Dimensions 17
Clearance Distance 18
Clearance Distance for Frame 100: 32-100 A 18
Clearance Distance for Frame 160: 80-160 A 20
Weights 22
TransferPacT Functions and Characteristics 23
TransferPacT Controller Functions and Characteristics 24
Assembly Matrix for TransferPacT Active Automatic and TransferPacT Automatic 26
TransferPacT Controller 27
Overview 28
Module Functions 30
Installation 48
Mounting the Switch on Plate for Frame 100: 32-100 A 49
Mounting the Switch on Plate for Frame 160: 80-160 A 50
Mounting the Switch on DIN Rail for Frame 100: 32-100 A 51
Mounting the Switch on DIN Rail for Frame 160: 80-160 A 52
Front Door Cutout 53
Installation of Controller Function Module 55
Controller Function Module Replacement 57
Wiring 58
Wiring Precautions 59
Wiring of Function Modules 60
Wiring of External HMI 69
Wiring Diagrams for Frame 100: 32-100 A. 71
Wiring Diagrams for Frame 160: 80-160 A. 73
Installation of Mechanism Accessories 74
Overview 75
Mounting the Terminal Cover 76
Mounting the Interphase Barrier 78
Mounting the Terminal Shield 79
Mounting the Auxiliary Contacts 81
Mounting of Load Extension Bars 82
HMI 84
Introduction 85
Automatic HMI with Rotary Switch as Embedded HMI. 86
Active Automatic HMI with LCD Display as Embedded HMI 88
External HMI 122
Operations 123
Overview 124
Automatic HMI with Rotary Switch as Embedded HMI 125
Active Automatic HMI with LCD Display as Embedded HMI 133
Control Mode 146
Modbus Communication 170
Introduction 171
Modbus Master-Slave Principle 172
Modbus Functions 175
Modbus Exception Codes 178
Modbus Registers 179
Alarms and Troubleshooting 190
Overview 191
Alarm 192
Warning 195
Event Logs 201
Dielectric Test 204
Cybersecurity 205
Acronyms and Terminology 206

Safety Information

Important Information

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

1 DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

About the Book

Document Scope

Use this guide to:

- Familiarize yourself with the mechanical and electrical characteristics of the components of TransferPacTTM range of Automatic Transfer Switching Equipment (ATSE) ranging from 32-160 A.
- Assemble and wire the ATSE.

Validity Note

This user guide is valid for TransferPacT range of ATSE configurations as mentioned below:

- 2 current rating ranges:
- Frame 100: rated current 32-100 A
- Frame 160: rated current 80-160 A
- Number of poles
- 2P (not available for frame 160)
- 3P
- 4P

The availability of some functions described in this guide depends on physical modules installed on the TransferPacT range of ATSE.

Online Information

The information contained in this document is likely to be updated at any time. Schneider Electric strongly recommends that you have the most recent and up-todate version available on www.se.com/ww/en/download.

The technical characteristics of the devices described in the present document also appear online. To access the information online, go to the Schneider Electric home page www.se.com.

The technical characteristics presented in this guide should be the same as those that appear online. If you see a difference between the information contained in this guide and online information, use the online information.

For product compliance with environmental directives such as RoHS, REACH, PEP, and EOLI, go to www.se.com/green-premium.

Related Documentation

Document title	Document reference number
Cybersecurity Guide	DOCA0215EN-00
TransferPacT Active Automatic 32-100 A	JYT3049801-00
TransferPacT Automatic 32-100 A	
TransferPacT Active Automatic 80-160 A	JYT3049901-00
TransferPacT Automatic 80-160 A	

Introduction to TransferPacT ATSE

What's in This Chapter
PacT Series Master Range 8
Overview 9
Hardware Description 10
Accessories 15

PacT Series Master Range

Future-proof your installation with Schneider Electric's low-voltage and mediumvoltage Pact Series. Built on legendary Schneider Electric innovation, the Pact Series comprises world-class circuit breakers, switches, residual current devices and fuses, for all standard and specific applications. Experience robust performance with Pact Series within the EcoStruxure-ready switchgear, from 16 to 6300 A in low-voltage and up to 40.5 kV in medium-voltage.

Overview

Coding Principle

TransferPacT is a high speed, compact, modular design intelligent automatic transfer switch that provide maximum scalability and robust performance.

- TransferPacT Automatic provides quick setting and easy view interface.
- TransferPacT Active Automatic provides comprehensive function with a buildin controller and display. It is also provided with optional extended HMI to display the HMI on the panel.

The TransferPacT ATSE is an equipment containing one or more switching devices for disconnecting the load circuits from one supply and connecting to another supply.

It is a PC class ATSE designed switch conforming to IEC 60947-6-1 standard and available from 32 to 160 A in 2,3 , and 4 poles with rated operating voltage from 220 to 440 V .

There are three types of switching equipment:

- Automatic Transfer Switching Equipment (ATSE): Self-acting transfer switching equipment, including all necessary sensing inputs, monitoring, and control logic for transferring operations.
- Remote Transfer Switching Equipment (RTSE): Transfer switching equipment that is electrically operated and not self-acting.
- Manual Transfer Switching Equipment (MTSE): Transfer switching equipment operated manually and non-electrically.

The commercial reference of Automatic Transfer Switching Equipment (ATSE) is coded with significant features to explain the type of frame ratings, transition type, controller type, rated voltage, rated current, and number of poles.

Hardware Description

Equipment Description

Label	Description
A	Position for modular for HMI
B	Active Automatic HMI (with LCD display)
C	Automatic HMI (with rotary switch)
D	Controller extension accessory
E	Power connections
F	Position indicator
G	3-position slider: Auto/Manual/Lock
H	Single line diagram
I	Dielectric switch

Active Automatic HMI (with LCD Display) Description

Label	Description
A	Navigation button to return to previous page
B	Navigation button of rolling up
C	Navigation button of rolling down
D	OK button to confirm any status

Automatic HMI (with Rotary Switch) Description

Label	Description
A	Rated frequency
B	Time delay for center-off position
C	Type of sources: $-\quad$ Utility/Utility - Utility/Genset
D	Source priority
E	Transition mode for return to normal position
F	Rated voltage
G	Voltage and frequency thresholds setting
H	Transfer time delay in seconds from normal source to alternate source
I	Transfer time delay in minutes from alternate source to normal source

Single Line Diagram Description

Label	Description
A	Source I power status indicator
B	Contact position of source I
C	Contact position of source II
D	Source II power status indicator
E	Alarm indicator
F	'Not in Auto' status indicator
G	Power ON indicator

Single Line Diagram LEDs

LED indication	Status	Description
い		No energy, ATSE power off
	$\stackrel{\text { neoms }}{\overbrace{1}}$	ATSE updating in process or in Test mode in progress
	\square	ATSE is running in normal operation, ready to transfer
A ${ }^{\text {a }}$	-----	The ATSE is running in Auto mode
	-	The ATSE will be in Not in Automatic mode, and will not automatically transfer in case of source failure.
©		No alarm
		Alarm is active
SI		No Source I
		Source I out of range
		Source I present and in the range
SII		No Source II
		Source Il out of range
	\checkmark	Source II present and in the range
-1		Source I is opened (Not connected)
	$\stackrel{400 \mathrm{~ms}}{\overbrace{ـ}}$	Time delay is running for transferring
		Source I is closed (Connected)
- "		Source II is opened (Not connected)
	$\stackrel{400 \mathrm{~ms}}{\overbrace{-}}$	Time delay is running for transferring
	」	Source II is closed (Connected)

NOTE: The LED indicator on the equipment and the external HMI is for reference. In the event of a contradiction between the LED and the position indicator on the ATSE, the latter prevail.

Position Indicator

Position indicator	Status
0	OFF
	Source I is connected

Accessories

External HMI

The accessories for external HMI are as below:

- External HMI (Base and Active Automatic HMI display using TPCCIF04)
- HMI cable (using TRV00810, TRV00820, TRV00830)
- IP 54 cover (for outdoor installation using TPCOTH37)

Controller Function Modules

The options and spare parts are:

- Load shedding and availability warning (TPCDIO05)
- Genset start and alarm (TPCDIO17)
- Transfer inhibit and remote testing (TPCDIO07)
- Voluntary remote control (TPCDIO08)
- Fire protection
- 24 V dc pulse (TPCDIO10)
- 24 V dc constant (TPCDIO11)
- 230 V ac constant (TPCDIO13)
- 1 Dry contact (TPCDIO14)
- BUS extension and 24 V dc auxiliary supply (TPCDIO15)
- $24 \mathrm{~V}+$ and 24 V - dc port
- RJ45
- Modbus RTU (TPCCOM16)

Switch

The accessories for the switch are as below:

- Interphase barrier (TPSISO29)
- Terminal shield (TPSISO30,TPSISO31)
- OF Auxiliary contacts (Wired) (TPSAUX32,TPSAUX33)
- Load extension bars (TPSCON35,TPSCON36)

Technical Characteristics

What's in This Chapter
Dimensions 17
Clearance Distance 18
Weights 22
TransferPacT Functions and Characteristics 23
TransferPacT Controller Functions and Characteristics 24
Assembly Matrix for TransferPacT Active Automatic and TransferPacT Automatic 26

Dimensions

This section describes the dimensions of the TransferPacT Active Automatic and Automatic switches. The dimensions are provided in millimeters and inches.

Dimensions for Frame 100: 32-100 A

Dimensions for Frame 160: 80-160 A

Clearance Distance

This section describes the safety clearance distances for ATSE switch and its accessories such as:

1. Terminal shield
2. Auxiliary contact
3. Cables
4. Busbar
5. Interphase barrier

ADANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Install the device so minimum clearance distance to grounded metal is maintained.

Failure to follow these instructions will result in death or serious injury.

Clearance Distance for Frame 100: 32-100 A

Safety Clearance for Switch

Safety Clearance for Terminal Shield

Safety Clearance for Auxiliary Contact

Safety Clearance for Cable

Safety Clearance for Busbar

Clearance Distance for Frame 160: 80-160 A
Safety Clearance for Switch

Safety Clearance for Terminal Shield

Safety Clearance for Auxiliary Contact

Safety Clearance for Interphase Barrier

Safety Clearance for Lug

Safety Clearance for Busbar

Weights

This section describes the weights of the TransferPacT Automatic and TransferPacT Active Automatic switches.

Frame Ratings	Weights
Frame 100: $32-100 \mathrm{~A}$	3.4 kg
Frame 160: $80-160 \mathrm{~A}$	5.6 kg

TransferPacT Functions and Characteristics

Frame	100 A	160 A
Type of device	Non-derived TSE PC type	Non-derived TSE PC type
Suitable for isolation	\square	\square
Electrical Characteristics		
Current rating (Ampere)	$32,40,50,63,80^{*}, 100^{*}$ *: AC-32 B for 80 A and 100 A	80,100,125,160
Rated operational voltage	2P:220/230/240/250 V 3P,4P:380/400/415/440 V	3P,4P:380/400/415/440 V
Number of poles	2,3,4	3,4
Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Insulating voltage Ui (VAC) switch only	800 V	800 V
Impulse withstand voltage Uimp (VAC) switch only	6kV	8kV
Rated short-circuit making capacity Icm (kA)	Switch alone	$15 \quad 20$
	with Upstream Circuit Breaker	75 154
Rated short-time withstand current Icw (kA)	$5 \mathrm{kA} / 0.1 \mathrm{~s}$	$10 \mathrm{kA} / 0.1 \mathrm{~s}$
Utilization category	AC-33B	AC-33B
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operational Characteristics		
Overvoltage category	III	III
Maintenance Mechanical durability	8000 cycles	10000 cycles
Additional Indication and Control Auxiliaries		
Auxiliary contacts for N and A position	\square	\square
Auxiliary contacts for OFF position	\square	\square
Installation and Connection		
Fixed top connection	\square	\square
Installation method	DIN Rail/Base Plate	DIN Rail/Base Plate
Installation and Connection Accessories		
Terminal shields	\square	\square
Inter-phase barriers	-	\square
Load extension Bars	\square	\square
Shipping Information		
Net weight kg	3.4	5.6
Dimension $\mathrm{L}^{*} \mathrm{~W}^{*}$ D mm	$155 * 310 * 94.3$	$164^{*} 351 * 95$

NOTE:

- ■: Solid green square represents standard function.
- \square : Hollow square represents optional function.

TransferPacT Controller Functions and Characteristics

Controller type		Active Automatic version with LCD display	Automatic version with rotary switch
Installation		Embedded controller	Embedded controller
Controller Functional Characteristics			
2P		230 V : can be set at $220 \mathrm{~V} / 240 \mathrm{~V} / 250 \mathrm{~V}$	230 V : can be set at $220 \mathrm{~V} / 240 \mathrm{~V} / 250 \mathrm{~V}$
3P/4P		400V: Can be set at $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V}$	400V: Can be set at $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V}$
Rated operating frequency (Hz)		50/60	50/60
Rated insulation voltage (V)		500	500
Impulse withstand voltage (KV)		6kV	6kV
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating altitude		<2000m	<2000m
Protection degree		IP20	IP20
Pollution degree		3	3
Accuracy(for power deviation)	Voltage	1\%	1\%
	Frequency	0.1\%	0.1\%
Electrostatic discharge		Level 4	Level 41
Radio-frequency electromagnetic field		Level 3	Level 3
Fast transient bursts		Level 4	Level 4
Surges		Level 4	Level 4
Harmonic wave		Class 3	Class 3
Voltage dips and short-time interruptions		Class 3	Class 3
Vibration		IEC 60068-2-6	IEC 60068-2-6
Shock		IEC 60068-2-27	IEC 60068-2-27
Display of Controller			
Display mode		LCD+LED+Indicator	Rotary switch+DIP switch+LED+Indicator
Single line diagram		\square	\square
Language		English/Chinese/French/Russian/Spanish/ Italian/German/Portuguese	Not Applicable
Power status		\square	\square
Position for contact		\square	\square
Set value		Button	Rotary switch+DIP switch
Control Mode			
Auto	Auto return	\square	\square
	Non return	\square	\square
Non-Auto	Handle	\square	\square
	Force	\square	\square
	Fire	\square	\square
	Inhibit	\square	\square
	Local	\square	-
	Voluntary	\square	\square
	Test	\square	\square
Auto Control			

[^0]| Controller type | | Active Automatic version with LCD display | Automatic version with rotary switch |
| :---: | :---: | :---: | :---: |
| Sampling | | Three Phase for both normal and alternate | Three Phase for both normal and alternate |
| Voltage loss | | <36V | <36V |
| Phase loss | | L1, L2, L3 | L1, L2, L3 |
| Under voltage | Set value | 70\% to 95\% | 4\%,6\%,8\%,10\%,12\%,14\%,16\%,18\%,20\% |
| Over voltage | Set value | 105\% to 135\% | 4\%,6\%,8\%,10\%,12\%,14\%,16\%,18\%,20\% |
| Under frequency | Set value | 80\% to 98\% | 2\%,3\%,4\%,5\%,6\%,7\%,8\%,9\%,10\% |
| Over frequency | Set value | 101\% to 120\% | 2\%,3\%,4\%,5\%,6\%,7\%,8\%,9\%,10\% |
| Unbalance of three phase voltage | | 2\% to 30\% | - |
| Phase rotation | | Yes | - |
| Time Delay | | | |
| Transfer delay | | 0 to 30 minutes | U-U:0, 1,2,3,5,10,20,30,60s. U-G:5s |
| Retransfer delay | | 0 to 60 minutes | 0,1,2,3,5,10,20,30,60min |
| Center of delay | | 0 to 30s | 0 or 5s |
| Genset start delay | | 0 to 120s | 0, 1, 2, 3, 5, 10, 20, 30, 60s |
| Genset cooldown delay | | 0 to 60 minutes | - |
| Loadshedding delay | | 0 to 15s | - |
| Genset ready alarm delay | | 15-300s | 300s |
| Test delay:on load | | 1-1800s | - |
| Test delay:off load | | 1-1800s | - |
| Other Functions | | | |
| Calender time | | \square | - |
| Position feedback | | \square | \square |
| Event log | | \square | - |
| Source priority | | \square | \square |
| Communication | | Modbus RTU | - |
| Transfer Inhibit | | \square | \square |
| Password protection | | \square | - |
| Gen start-stop | | \square | \square |
| Test | | \square | \square |
| Load shedding | | \square | \square |
| Fire protection | | \square | \square |
| Failure lock | | \square | \square |
| Alarm indication | | \square | \square |
| External power supply port | | \square | - |
| Wrong connection of neutral alarm | | \square | - |

Assembly Matrix for TransferPacT Active Automatic and TransferPacT Automatic

Device	Type of HMI	Number of poles	Voltage	Type of connection	Rated current
Frame 100	Active Automatic HMI(LCD)	2	$\begin{array}{\|l\|} \hline 220 / 230 / \\ 240 / 250 \mathrm{~V} \end{array}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
		3	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
		4	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
	Automatic HMI (Rotary and DIP switch)	2	$\begin{aligned} & 220 / 230 / \\ & 240 / 250 \mathrm{~V} \end{aligned}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
		3	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
		4	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}$
Frame 160	Active Automatic HMI(LCD)	3	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$80 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}, 160 \mathrm{~A}$
		4	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$80 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}, 160 \mathrm{~A}$
	Automatic HMI (Rotary and DIP switch)	3	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$80 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}, 160 \mathrm{~A}$
		4	$\begin{aligned} & 380 / 400 / \\ & 415 / 440 \mathrm{~V} \end{aligned}$	Top	$80 \mathrm{~A}, 100 \mathrm{~A}, 125 \mathrm{~A}, 160 \mathrm{~A}$

TransferPacT Controller

What's in This Chapter

Overview 28
Module Functions 30

Overview

TransferPacT is provided with advanced microprocessor controller with two options:

- Active automatic HMI (LCD display and keypad)
- Automatic HMI (Rotary and DIP switch)

It is a robust and reliable controller which offers all of the voltage, frequency, control, timing and diagnostic functions required for wide range of power applications.

The Automatic HMI is an easy install and use, while Active automatic HMI contains every function needed with 8 control modes.

There are two key features of TransferPacT controller:

- Automatic HMI can be hot swapped to Active Automatic HMI, an easy way to upgrade your controller, HMI can also be easily replaced for maintenance or renewal.
- 10 types of function modules can be installed on TransferPacT controller at any time, which provide maximum scalability and a reduced total cost of ownership and add a function as demand grows.

Controller Function Module

The Controller function module is used to extend the interactive function of the TransferPacT ATSE.

It has three core parts:

- Rotary cover: It is used to insert or plug the accessories by opening the cover.
- LED: It is used to indicate the power status and connection of the accessories. Green LED indicates that the accessories are powered and properly connected, and OFF indicates that the accessories are not live except for bus extension and 24 Vdc auxiliary supply module (TPCDIO15), it is ON to indicate there is an external 24 Vdc power supply .
- Power terminals: It is used for wiring.

Function Module Package Details

In the packaging box, the function module and light instruction are provided.

Module Functions

Overview

TransferPacT provides the source changeover solution with transfer switch function modules to upgrade without interruption of power.

The details of the terminals of function modules are shown below:

Voluntary Remote Control

The voluntary remote control modules are the accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with the following functions:

- Voluntary remote control to N or $\mathrm{A}, 2 \mathrm{NO}$ contacts are provided.
- Force to off, 1 NO contact is provided.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE.
- Only one voluntary remote controller module is allowed to be installed on the product.

Application Voluntary to N or A

Voluntary transfer is an active input which can transfer the ATSE to normal or alternate source according to requirements (such as energy saving).

Voluntary transfer will still keep the power continuity as much as possible. The function will be bypassed, if target source lost the power. For example, after voluntary to A while A source failed, ATSE will transfer back to N if N is available.

Exit the voluntary mode after signal disappeared.

Force to Off

Force to Off is an emergency stop order, to transfer the ATSE to off position. All the other transfer mode will be canceled except handle control.

Exit Force to Off after signal disappeared.

Terminals

There are three terminals of the voluntary remote controller modules as below:

- V1-V0: Voluntary to N
- V2-V0: Voluntary to A
- F1-V0: Force to Off

Signal Type

- Digital input with dry contact.
- Need over 200 ms input to start voluntary remote control.

Performance

Electrical Characteristics	Ratings
Ui	30 Vdc
Input voltage	Dry contact
Minimum input current	5 mA
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

The Genset start and Alarm is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Genset output control with optional time delay function, 1 NC and 1 NO dry contacts are provided.
- Alarm output, 1 NO dry contact is provided.
- Green LED on the top of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE.
- Only one Genset start (with capacitor) and alarm is allowed to be installed on one product.

Application Genset Start Output

When the utility source is lost, a dry contact will start the Genset irrespective with or without external 24 Vdc . A time delay (T7) before Genset start can be set with or without external 24 V .

When the utility source has recovered and ATSE has transferred back to Utility, the Genset signal will remain until the end of the Genset cooldown timer.

Alarm

When there is an alarm, a dry contact will give the signal.
Restart the controller (open and close the dielectric door) to shut down the alarm.

Terminals

For Genset start: $1 \mathrm{NO}+1 \mathrm{NC}$:

- NO: G1-G4
- NC: G1-G2

Alarm: 1 NO

- NO:A1-A2

Signal Type

Digital output.

Performance

Electrical Characteristics	Ratings
Ui	300 V
Maximum output voltage	$250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ or 30 Vdc
Maximum output current	5 A
Over voltage category	III
Pollution degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Load Shedding and Availability Warning

The load shedding and availability warning is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Load shedding output, 1 NO and 1 NC dry contacts is provided.
- Available warning, 1 NO dry contact is provided.
- Green LED is on the top of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE .
- Only one load shedding and availability warning is allowed to be installed on one product.

Application Load Shedding

The Alternate power (Genset) sometimes may not afford all loads. A signal from controller will shed some non-critical loads.

Load shedding will send the signal after enabling this function.

Application Availability Warning

When transfer switch is not in auto or power lost on two sources, a dry contact will give the signal.

After back to auto status or power recovery, the signal will be stopped.

Terminals

Load shedding: $1 \mathrm{NO}+1 \mathrm{NC}$

- NO: LS1-LS4
- NC: LS1-LS2

For status output: 1 NO

- NO: AW1-AW2

Signal Type

Digital output.

Performance

Electrical Characteristics	Ratings
Ui	300 V
Maximum output voltage	$250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ or 30 Vdc
Maximum output current	5 A
Over voltage category	III
Pollution degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Transfer Inhibit and Remote Testing

The transfer inhibit and remote testing is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Transfer inhibit, 1 NO dry contact is provided.
- Remote testing, 1 NO dry contact is provided.
- Green LED on the top of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE.
- Only one transfer inhibit and remote testing is allowed to be installed on one product.

Application Transfer Inhibit

- Transfer Inhibit when there is power interruption because of short circuit.
- This function can be used to lock the controller by customized signals.
- This function can be used for cooperation with different ATSE.
- Remove transfer inhibit signal to exit this mode.

Application Remote Testing

- Remote testing is an input signal to start test procedure.
- The remote test can only be started at Auto mode.
- For Active Automatic HMI, on load, off load test and time duration can be selected
- For Automatic HMI, on load test is unlimited. Stop the test manually by opening the dielectric switch on ATSE, and it should be back in run position to resume the controller function.

Terminals

For transfer inhibit: 1 input

- Inputs : TI1-TI2

For remote testing: 1 input

- Inputs : RT1-RT2

Signal Type

- Digital input with dry contact
- Need over 200 ms input to start transfer inhibit and remote test

Performance

Electrical Characteristics	Ratings
Ui	30 V dc
Input voltage	Dry contact
Maximum Input current	5 mA
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

BUS Extension and 24 VDC Auxiliary Supply

The BUS extension and 24 VDC auxiliary supply is an accessory module installed on TransferPacT Active Automatic controller with following functions:

- Bus extension, 1 RJ45 is provided.
- DC 24 V and 1 input is provided.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE.
- Only one BUS extension and DC 24 V auxiliary supply is allowed to be installed on one product, in the right most slot.

Application BUS Extension

BUS extension is used to connect external HMI.

Application with DC 24 V

- External power for controller when both source failure.
- External power to keep power for Modbus communication when both source failure.

Terminals

For BUS Extension

- RJ45

DC 24 V

- $24 \mathrm{~V}+, 24 \mathrm{~V}-$

Signal Type

Power supply and bus extension.

Performance

Electrical Characteristics	Ratings
Ui	30 Vdc
Maximum Input voltage	28.8 Vdc
Minimum input voltage	19.2 Vdc
Maximum input current	1 A
Pollution degree	3
Altitude	2000 m
RJ45	CAT 3

Cable Capacity for Terminals

The cable capacity for the terminals are as below:

- The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).
- RJ45

Fire Protections 24 V DC Pulse Input

The fire protection is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Exit the auto transfer mode and transfer the switch to OFF according to input signal.
- Fire protection with input of DC 24 V pulse signal.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- The main MCU on TSE communication through CAN bus.
- Only one module is allowed to be installed on one product.

Application

When there is fire emergency and protect power continuity for critical loads, the fire protection signal can transfer ATSE to off position.

Terminals

- Fire protection with DC 24 V Pulse:
- Start: P1+.P1-
- Exit: P2+,P2-

Performance

Electrical Characteristics	Ratings
Ui	30 V dc
Maximum input voltage (Fire ENABLE)	28.8 V dc
Minimum input voltage (Fire ENABLE)	19.2 V dc
Maximum input voltage (Fire DISABLE)	28.8 V dc
Minimum input voltage (Fire DISABLE)	19.2 V dc
Maximum input current	5 mA
Over voltage category	II
Pollution Degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Fire Protection 24 V DC Constant Input

The fire protection is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Exit the auto transfer mode and transfer the switch to OFF according to input signal.
- Fire protection with input of DC24V constant signal.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- The main MCU on TSE communication through CAN bus.
- Only one module is allowed to be installed on one product.

Application

When there is fire emergency and protect power continuity for critical loads, the fire protection signal can transfer ATSE to off position.

Terminals

- Fire protection with DC24V constant signal:
- C1+.C1-

Performance

Electrical Characteristics	Ratings
Ui	30 V dc
Maximum input voltage (Fire ENABLE)	28.8 V dc
Minimum input voltage (Fire ENABLE)	19.2 V dc
Maximum input current	5 mA
Over voltage category	II
Pollution Degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Fire Protection 230 V AC Constant Input

The fire protection is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Exit the auto transfer mode and transfer the switch to OFF according to input signal.
- Fire protection with input of AC230V constant.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- The main MCU on TSE communication through CAN bus.
- Only one module is allowed to be installed on one product.

Application

When there is fire emergency and protect power continuity for critical loads, the fire protection signal can transfer ATSE to off position.

Terminals

- Fire protection with input of AC230V constant.
- C1+.C1-

Performance

Electrical Characteristics	Ratings
Ui	300 V
Maximum input voltage (Fire ENABLE)	276 V ac
Minimum input voltage (Fire ENABLE)	184 V ac
Maximum input current	5 mA
Over voltage category	II
Pollution Degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Fire Protection Dry Contact Input

The fire protection is an accessory module installed on TransferPacT Automatic and TransferPacT Active Automatic controller with following functions:

- Exit the auto transfer mode and transfer the switch to OFF according to input signal.
- Fire protection with 1 dry contact input.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- The main MCU on TSE communication through CAN bus.
- Only one module is allowed to be installed on one product.

Application

When there is fire emergency and protect power continuity for critical loads, the fire protection signal can transfer ATSE to off position.

Terminals

- Fire protection with 1 dry contact input:
- W1.W2

Performance

Electrical Characteristics	Ratings
Ui	30 Vdc
Input voltage	Dry contact
Minimum input current	5 mA
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Modbus RTU (Serial Port)

The modbus is an accessory module installed on TransferPacT Active Automatic controller with following functions::

- Modbus RTU communication supporting MODBUS protocol.
- Indicate the com status of the accessory by using a yellow LED on top of the accessory.
- Green LED on the front face of the accessory indicates the power status and proper connection of the accessory.
- Communication with the main MCU on TSE.
- Two Modbus are allowed to be installed on one product.

Application Modbus

Modbus can be used to connect with other system. It require external 24 V or at least one main source to keep the communication with protocol Modbus RTU.

Terminals Modbus

- Modbus:
- D1, D0, 0V, Shield

Signal Type

Serial port.

Performance

Electrical Characteristics	Ratings
Ui	30 Vdc
Baud Rate (KBS)	$4.819 .6 \backslash 19.2$
Over voltage category	III
Pollution degree	3
Altitude	2000 m

Cable Capacity for Terminals

The cable capacity for the terminals are $0.05-2.6 \mathrm{~mm}^{2}$ (AWG $30 \sim 13$).

Limitation of Accessories

Type	Max
DI-Fire (Including 4 fire type)	1
DI-Inhibit	1
DI-Voluntary	1
DI-Inhibit and test	1
DO-Load shedding and availability	1
DO-Genset start and alarm	1
Modbus	2

Installation

What's in This Chapter
Mounting the Switch on Plate for Frame 100: 32-100 A 49
Mounting the Switch on Plate for Frame 160: 80-160 A 50
Mounting the Switch on DIN Rail for Frame 100: 32-100 A 51
Mounting the Switch on DIN Rail for Frame 160: 80-160 A 52
Front Door Cutout 53
Installation of Controller Function Module 55
Controller Function Module Replacement 57

Mounting the Switch on Plate for Frame 100: 32-100 A

Perform the following procedure to mount the switch on the plate.

1. Drill four holes on the mounting plate for screws.
2. Place the switch on the plate.
3. Tighten the four screws at the right torque.

NOTE: Screws, slices, and nuts are delivered with the switch.

Mounting the Switch on Plate for Frame 160: 80-160 A

Perform the following procedure to mount the switch on the plate.

1. Drill four holes on the mounting plate for screws.
2. Place the switch on the plate.
3. Tighten the four screws at the right torque.

NOTE: Screws, slices, and nuts are delivered with the switch.

Mounting the Switch on DIN Rail for Frame 100: 32-100 A

Perform the following procedure to mount the switch on the DIN rail.

1. Insert the latch on the TSE.
2. Move the latch downwards using screwdriver having sufficient space to install DIN rail.
3. Place the switch on the DIN rail.
4. Move the latch upwards using screwdriver to lock the DIN rail.

Mounting the Switch on DIN Rail for Frame 160: 80-160 A

Perform the following procedure to mount the overload relays on the DIN rail.

1. Insert the spring into the latch.
2. Insert the latch into the TSE and move downwards.
3. Insert the screw into the latch.
4. Place the TSE on the DIN rail.

Front Door Cutout

The front door should be cut as per the below dimensions for TransferPacT Active Automatic and Automatic switches. The dimensions are provided in millimeters and inches.

Front Door Cutout for Frame 100: 32-100 A

Front Door Cutout for Frame 160: 80-160 A

Installation of Controller Function Module

NOT/CE
INOPERABLE FUNCTION MODULES
Do not install the function module unless the dielectric switch is in test position.
Failure to follow these instructions can result in failure of function module.

Perform the following procedure to install the controller function module:

1. Put the controller on handle mode.
2. Open the dielectric switch from run to test using screwdriver.
3. Pull out the dielectric switch.
4. Insert the screwdriver into the dummy module.
5. Twist the screwdriver.
6. Remove the dummy module and store it for future use.
7. Open the controller function module from the package.
8. Open the front cover of the function module.
9. Insert the function module into the switch.
10. Close the function module cover after wiring. For more information on wiring, refer to Wiring of Function Modules, page 60.
11. Change the dielectric switch position from Test to Run using screwdriver.

Controller Function Module Replacement

Perform the following procedure to replace the controller function module:

1. Put the controller on handle mode.
2. Open the dielectric switch from run to test using screwdriver.
3. Pull out the dielectric switch.
4. Open the front cover of function module.
5. Loosen the terminal of the function module using screwdriver.
6. Remove the wiring.
7. Pull out the function module.
8. Take out the new function module from the packaging box.
9. Open the front cover of the function module.
10. Insert the function module into the TransferPacT switch.
11. Insert the wire into the function module terminal.
12. Lock the terminal using screwdriver.
13. Close the front cover of the function module.
14. Change the dielectric switch position from Test to Run using screwdriver.

Wiring

What's in This Chapter
Wiring Precautions 59
Wiring of Function Modules 60
Wiring of Auxiliary Contacts 66
Wiring of External HMI 69
Wiring Diagrams for Frame 100: 32-100 A 71
Wiring Diagrams for Frame 160: 80-160 A 73

Wiring Precautions

Read and understand the following precautions before performing any procedures in this guide.

AADANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462,NOM 029-STPS or local equivalent.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this equipment before working on this equipment.
- Use only the specified voltage when operating this equipment and any associated products.
- Power line circuits must be wired and protected in compliance with local and national regulatory requirements.
- Beware of potential hazards, and carefully inspect the work area for tools and objects that may have been left inside the equipment.

Failure to follow these instructions will result in death or serious injury.

ANMRNING
FIRE HAZARD
- Use only the specified wiring gauge range with the equipment and comply
with the specified wire termination requirements.
- Tighten the power line connections to the specified torque values.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

AWARNING

UNINTENDED EQUIPMENT OPERATION

Always route communication wiring and power wiring separately.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Wiring of Function Modules

This section describes the function modules wiring accessories of the TransferPacT Active Automatic 32-160 A and TransferPacT Automatic 32-160 A transfer switch equipment.

TPCDIO05 : Load Shedding and Availability Warning
Wiring Diagram

Terminal

TPCDIO07 : Transfer Inhibit with Remote Testing

Wiring Diagram

Terminal

TPCDIO08: Voluntary Remote Control
Wiring Diagram

Terminal

TPCDIO10 : Fire Protection 24 Vdc Pulse Input
Wiring Diagram
P1+ $0--{ }^{7}-$---OP1-

Terminal

TPCDIO11 : Fire Protection 24 Vdc Constant Input
Wiring

Terminal

TPCDIO13 : Fire Protection 230 Vac Constant Input

Wiring

Terminal

TPCDIO14 : Fire Protection 1 Dry Contact Input
Wiring

Terminal

TPCDIO15 : BUS Extension and 24 Vdc Auxiliary Supply

Wiring

$\stackrel{24 \mathrm{~V}+}{\mathrm{O}}+\mathrm{O} \quad \mathrm{O}$

Terminal

NOTE:

- TPCDIO15 is used only for TransferPacT Active Automatic.
- TPCDIO15 need to insert only on the right side for better results.

TPCCOM16: ModBus (RTU)
Wiring

NOTE: TPCCOM16 is used only for TransferPacT Active Automatic.

TPCDIO17 : Genset Start and Alarm
Wiring

Terminal

Wiring Procedure of Function Modules

Perform the following wiring procedure of function modules:

1. Open the function module cover.
2. Insert the wire into the function module terminal.
3. Tighten the screw terminal using screwdriver.
4. Close the function module cover.

Wiring of Auxiliary Contacts

Perform the following procedure for wiring the auxiliary contacts:

1. Remove the cover of auxiliary contacts.
2. Place the cable vertically on the top power terminals of the switch.
3. Tighten the screw terminals at the right torque.
4. Place the cable vertically on the bottom power terminals of the switch.
5. Tighten the screw terminals at the right torque.
6. Put the cover back on the auxiliary contacts.

Wiring Diagram for Auxiliary Contact TPSAUX32

Auxiliary Contact for Source Position

ATSE is closed at SI :

- F11-F14 is closed
- F11-F12 is opened

ATSE is closed at SII:

- F21-F24 is closed
- F21-F22 is opened

ATSE is at OFF position:

- F11-F12 and F21-F22 are closed
- F11-F14 and F21-F24 are opened

Wiring Diagram for Auxiliary Contact TPSAUX33

Auxiliary Contact for OFF Position

ATSE is at OFF position: F12-F22 is closed.

ATSE is not at OFF position: F11-F14 and F21-F24 are closed.

Wiring of External HMI

Overview

The external HMI is used to display the HMI on the panel. The HMI consists of external HMI base and a LCD screen.

The external HMI must be connected with the function module with commercial reference as TPCDIO15. The connection of the external HMI is done using a cable and an external HMI base and LCD display.

Position of External HMI and Switch

Perform the following procedure to install the external HMI on the front panel door.

1. Rotate the external HMI to the back side.
2. Remove the nut of external HMI.
3. Insert the external HMI on the front panel door.

NOTE: Please make the cutout on the front door as per the dimension given.
4. Insert the nut.
5. Lock the nut.
6. Insert the cable into the external HMI.
7. Insert the other end of the cable into the function module (TPCDIO15).

Position of External HMI and IP54 Cover

Perform the following procedure to install the external HMI and IP54 cover on the front panel door.

1. Rotate the external HMI to the back side.
2. Remove the nut of the external HMI.
3. Remove the screws of IP54 cover by using screwdriver.
4. Open the IP54 front cover.
5. Insert the external HMI into the IP54 cover.
6. Close the IP54 front cover.
7. Tighten the screws of IP54 cover by using the screw driver.
8. Insert the external HMI and IP54 cover on the front panel door.

NOTE: Please make the cutout on the front door as per the dimension given.
9. Insert the nut.
10. Lock the nut.
11. Insert the cable into the external HMI.
12. Insert the other end of the cable into the function module (TPCDIO15).

Wiring Diagrams for Frame 100: 32-100 A

3P/4P

Wiring Diagrams for Frame 160: 80-160 A

3P/4P

Installation of Mechanism Accessories

What's in This Chapter
Overview 75
Mounting the Terminal Cover 76
Mounting the Interphase Barrier 78
Mounting the Terminal Shield 79
Mounting the Auxiliary Contacts 81
Mounting of Load Extension Bars 82

Overview

The mechanism accessories for the TransferPacT Active Automatic and TransferPacT Automatic are as below:

- Terminal cover (default accessory)
- Interphase barrier
- Terminal shield
- Auxiliary contacts
- Load extension bars

Mounting the Terminal Cover

The terminal cover are used between the power terminals to provide the correct insulation between the phases.

AADANGER

HAZARD OF FLASH OVER BETWEEN POLARITIES
Terminal cover must be installed after wiring to ensure proper insulation.
Failure to follow these instructions will result in death or serious injury.

A A WARNING
UNGUARDED MACHINERY HAZARD
Install the terminal cover correctly after wiring, to ensure the insulation distance.
Failure to follow these instructions will result in death or serious injury.

Terminal Cover for Frame 100: 32-100 A

1. Take the terminal cover from the packaging cover.
2. Push the terminal cover inwards on the power terminals to lock it automatically with a click.

Terminal Cover for Frame 160: 80-160 A

1. Take the terminal cover from the packaging cover.
2. Push the terminal cover on source I (SI), source II (SII), and load.

Mounting the Interphase Barrier

The interphase barriers are installed between the power terminals of the TSE to provide insulation between the phases.

NOTE: The interphase barrier is only used for frame 160: 80-160 A.

1. Remove the terminal covers of source I (SI), source II (SII), and load.
2. Install the interphase barrier on source II (SII).
3. Push the terminal cover on source II (SII).
4. Install the interphase barrier on source I (SI) and load.
5. Push the terminal cover on source I (SI) and load.

Mounting the Terminal Shield

The terminal shield can be installed on the top and/or bottom of the power terminals of TSE to provide IP20 protection.

NOTE: The terminal cover and the terminal shield cannot be used together. Only one of them is applicable to an ATSE.

Terminal Shield for Frame 100: 32-100 A
NOTE: Remove the terminal covers if present.
Place the terminal shield on the power terminals and then the snap should be inserted into the holes correctly.

Terminal Shield for Frame 160: 80-160 A

NOTE: Remove the terminal covers and interphase barriers, if present.

1. Pull out the cap of the terminal shield using screwdriver.
2. Place the terminal shield on the power terminal through the guideways.
3. Push down the cap of the terminal shield.

Mounting the Auxiliary Contacts

The two categories of auxiliary contacts are:

1. TPSAUX32
2. TPSAUX33

Perform the following procedure for mounting the auxiliary contacts:

1. Remove the cover of auxiliary contacts.
2. Align the hooks of auxiliary contacts properly into the switch and push it inwards to lock it automatically with a click.
3. Put the cover back on the auxiliary contact after wiring

NOTE: Maximum two auxiliary contacts can be mounted on the same switch.

Mounting of Load Extension Bars

The load extension bars are used to connect the power terminals of switch and cables for load side.

1. Place the bars on the power terminals of the switch.
2. Tighten the screw terminals at the right torque by using screwdriver.

3. Place the lugs on the extension bars of the switch.
4. Insert and tighten the screws at the right torque by using an allen key.

5. Push the terminal cover inwards on the power terminals to lock it automatically with a click.

What's in This Chapter
Introduction 85
Automatic HMI with Rotary Switch as Embedded HMI 86
Active Automatic HMI with LCD Display as Embedded HMI 88
External HMI 122

Introduction

Overview

The TransferPacT Automatic has two embedded HMI and one external HMI. The two embedded HMIs can be inserted on the slots of the embedded HMI. They are as below:

- Automatic HMI with Rotary Switch
- Active Automatic HMI with LCD Display

The two embedded HMIs can be replaced with each other with hot swap approach.

Automatic HMI with Rotary Switch as Embedded HMI

The Automatic HMI with rotary switch is convenient for commissioning as all settings are transparent to the customer. Only some spare parts can be used with automatic HMI using TPCCIF02 accessories.

Automatic HMI Settings

Label	Description	Function	Diagram		
1	Dip switch for rated frequency	The rated frequency as nominal value will become the reference for frequency threshold.	$50 \mathrm{~Hz} \square \text { 60Hz }$		
2	Dip switch for time delay at off position	- Time delay applied to the center-off position O when position I and position II are transferring, it stops at position O to protect inductive load. - The delay is used for both process of transfer to N and A . - The delay shall detect both sources, the stop condition will be either N recovered, or A source failed.	$\text { 0s } \square \text { 5s }$		
3	Dip switch for application	The application type can be selected as Utility to Utility or Utility to Genset.	$0 / O \square \square \square$		
4	Preferable source selection or priority source, page 133	SI and SII indicate the physical position of source. The normal and alternate power can be match to SI or SII according to requirement: - When select SI as priority: SI becomes normal power while SII becomes alternate power. - When select SII as priority: SII becomes normal power while SI becomes alternate power.	$S\\|\square S\\|$		
5	Dip switch for working mode	Two auto working mode can be selected: - Auto-Auto return - Auto-Non return			
6	Rotary switch for rated voltage Ue	The rated voltage as nominal value will become the reference for voltage threshold. $\begin{aligned} & \text { 2P (L-N) : } 220 \mathrm{~V}, 230 \mathrm{~V}, 240 \mathrm{~V}, 250 \mathrm{~V} . \\ & 3 \mathrm{P} \text { and } 4 \mathrm{P}(\mathrm{~L}-\mathrm{L}): 380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V} . \end{aligned}$			
7	Rotary switch for threshold selection of voltage and frequency	Δf : The frequency deviation gap as reference of rated frequency. $\Delta \mathrm{U}$: The voltage deviation gap as reference of rated voltage.			

| Label | Description | Function | Diagram |
| :--- | :--- | :--- | :--- | :--- |
| 8 | Rotary switch for transfer
 time delay from $\mathrm{N}-\mathrm{A}$ | $\Delta \mathrm{t}$: Transfer time delay between $\mathrm{N}-\mathrm{A}$. The unit is
 second. | |

Active Automatic HMI with LCD Display as Embedded HMI

The Active Automatic HMI with LCD display of the switch matches to all extension accessories using TPCDIO15. It displays all logs and settings with password protection. It can also be extended with more advanced functions, such as communications with extension plus 24 Vdc .

Active Automatic HMI Settings

Label	Description	Function
1	LCD screen	LCD screen for display
2	ESC	ESC button to cancel the selected option or return to the previous menu.
3	Up button	Up navigation button for rolling up
4	Down button	Down navigation button for rolling down
5	OK button	OK button to confirm the selected option

Wizard Setup

NOTE: Before configuring wizard setup, TransferPact ATSE should be without transfer function.

A Wizard should be configured once the ATSE is power ON for the first time.
Perform the following procedure to complete the wizard setup:

1. Select the language.

There are eight languages and options are:

- English
- French
- Spanish
- German
- Italian
- Portuguese
- Russian
- Chinese

2. Select the Rated Voltage.

The rated voltages options are:

- 2P: 220 V, 230 V, 240 V, 250 V
- 3P and 4P: $380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}$

NOTE: The power supply of TransferPacT is required to be 380 Vac -20% to $440 \mathrm{Vac}+20 \%$ at a frequency of $50 / 60 \mathrm{~Hz}$ and it has been developed to meet most of the network configurations.

3. Select the Rated Frequency.

The rated frequencies options are:

- 50 Hz
- 60 Hz

4. Select the Neutral Position.

The neutral positions options are:

- A-B-C-N
- $\mathrm{N}-\mathrm{A}-\mathrm{B}-\mathrm{C}$

5. Select the Source Configuration.

The different source type and priority is shown below:

- SI-Utility(N)/SII-Utility(A)
- SI-Utility(N)/SII-Genset(A)
- SI-Genset(A)/SII-Utility(N)
- SI-Utility(A)/SII-Utility(N)

6. Select the Return Modes.

The return modes options are:

- Auto-Return
- Non-Return

7. Click OK to save the changes.

Home Page of LCD Display

Label	Description	Function
1	Quickview	Name for current page
2	Quickview	Open Quickview menu to check general information of ATSE
3	Set \& operate	Open Set \& operate menu for commissioning and settings
4	Measure	Open Measure menu to check the details of power status
5	Status	Open Status menu to check status of ATSE include event logs
6	Icon for time	To show the time
7	Time	Time which needs to be reset after power contingency
8	Transfer Mode	Eight control modes: - Auto mode (AT) (A) - Test mode T - Voluntary transfer mode - Local control mode - Transfer Inhibit mode - Force to off mode - Fire protection mode (3) - Handle transfer mode新

Quickview Page

The Quickview page is the home page of LCD display. It displays the following four options:

- Quickview
- Measure
- Status
- Set \& Operate

View Page

1. Select View and press OK button to open its sub-pages.
2. Press Up and Down buttons to navigate to each sub-page. The below table provide the details of the View sub-pages:

Sub-page name	Sub-page function	Display	
System Overview	To show the system overview: - SI and SII general status. - Contact position.		
SI	To show the SI voltage status: - Real time phase voltage of SI. - Real time frequency of SI.	O) SI U12 $\mathbf{3 8 7 . 3}$ V U23 $\mathbf{3 8 6 . 9}$ V U31 $\mathbf{3 8 5 . 1}$ V F $\mathbf{5 0 . 0}$ Hz $(-)$ $00: 13$ A.	
SII	To show the SII power status: - Real time phase voltage of SII. - Real time frequency of SII.	(O) SII U12 $\mathbf{0 . 0}$ V U23 $\mathbf{0 . 0}$ V U31 $\mathbf{0 . 0}$ V F $\mathbf{0 . 0}$ Hz () $00: 13$ \overparen{A}	
Slots	To show the slot status: - Black box indicates that the accessories are working. - Empty box indicates that the accessories are not working.	Slots	
Date/Time	This sub page is to show the timer in controller. NOTE: Calibrate the timer after long terms of power interruption. Use DC 24 V to keep the accuracy of the timer.	Date / Time $2000-01-01$ YY MM DD $00: 14: 12$ HH MM SS () $00: 14$	

Measurement Page

1. Select Measurement and press OK button to open its sub-pages.
2. Press Up and Down buttons to navigate to each sub-page.

The below table provide the details of the Measurement sub-pages:

Status Page

1. Select Status and press OK button to open its sub-pages.
2. Press Up and Down buttons to navigate to each sub-page.

The below table provide the details of the Status sub-pages:

Sub-page name	Sub-page function	Display	
Slots	Slots Status sub-page navigates to more status checking in the display and click Slots to check status of accessories slots.	Status Slots Transfer Count Transfer Diag Event Logs (ㄷ) 00:03	
	To show the Slot status: - Black box indicates that the accessories has inserted well. - Empty box indicates that the accessories has not inserted or not inserted well.	Slots	
Transfer Diagnostic	Transfer Diagnostic Status sub-page navigates to more status checking in the display and click Transfer diagnostic to check the transfer times.	Status Slots Transfer Count Transfer Diag Event Logs (ㄷ) 00:03	
	Transfer Diagnostic sub-page is to show the transfer times: - Successful transfer counts - Failed transfer counts - Too many transfer counts	Transfer Diag Too Many Transf. Count:	
Event Logs	Event Logs Status sub-page navigates to more status checking in the display and click Event Logs to check list of logs.	Status Transfer Diag Event Logs Version	

Sub-page name	Sub-page function	Display	
	Event Logs sub-page is to show the list of event logs: - Use up and down button for navigation. - Click Event Log XX to check status of logs.	Event Logs \uparrow Transf. from A to N \uparrow SI Back To Normal \downarrow SI No Voltage 个 Transf. from N to A (D) 01:33 ©	
Event Logs \mathbf{x}	Event Logs $\mathbf{x x}$ sub-page is to show the information of event logs: - Time of events. - Source status during events. For more information on Event Code, refer to Event Logs., page 201	Ell Event Logs Run Mode: Auto Event Type: Raised SI Back To Normal Press OK for more (ㄷ) $01: 33$ ESC	
Detailed Info	To show the cause of events: - Transfer mode during events. - Type of events.		
Version	Version Status sub-page navigates to more status checking in the display and click Version to check product information.		
	To show the list of hardware components: - Use up and down button for navigation. - Click different components to check their information.	Version Controller Internal LCD Modbus Fire Dry Level (ㄷ) 03:17	
Controller	To show the components information - Series number of components. - Firmware version.	OS ControllerSerial Number: DT-21-24-2-07-0001 Version: 000.016 .000 () 03:18 A.	

Set \& Operate Page

1. Select Set \& Operateand press OK button to open its sub-pages.
2. Press Up and Down buttons to navigate to each sub-page.

Operations Sub-Page

NOTE: Once the TransferPacT ATSE is power ON for the first time, suggested to change the password. The default password is 0000.
The below table provide the details of the Operation sub-pages:

Sub-page name	Sub-page function	Display	
Operations	Set \& Operate page navigates to more maintenance checking in the display and click Operations to control the ATSE or acknowledge the alarm.	Set \& Operate Operations System Param Application Time Delays () 03:32	
Warning Acknowledge	Operations sub-page navigates to more operating checking in the display and click Warning to cancel the alarm.	Operations Warning Ack Alarm Ack Local Control On Load Test On Load Test Fai A. Warning Ack SI No Voltage SII No Voltage On Load Test Failure	
Confirm Operation	Confirm Operations sub-page is to confirm the Warning Acknowledge.		

Sub-page name	Sub-page function	Display	
Disable Local Control	Disable Local Control is a sub-page of Local Control. Select the Disable Local Control again to exit local control mode. NOTE: If exit this page without disable local control mode, the transfer switch will stay at local control mode until a control mode with higher priority is coming at the bottom indicates the transfer mode.	Local Control Disable Local Control Transfer to $\mathrm{SI}(\mathrm{N})$ Transfer to SII(A) Transfer to OFF () 03:25	
Confirm Operation	Confirm Operations sub-page is to confirm the Local Control.		
Transfer to N Transfer to R Transfer to OFF	Transfer to \mathbf{N} and Transfer to A depends on target source status, Transfer to OFF always active. After enabling the Local Control, there are three options: - Click Transfer to \mathbf{N} to transfer the switch to normal. - Click Transfer to A to transfer the switch to normal. - Click Transfer to OFF to transfer the switch to normal. NOTE: Transfer to N or A will be successful only when the target source is present and in range.	Local Control Disable Local Control Transfer to $\mathrm{SI}(\mathrm{N})$ Transfer to SII(A) Transfer to OFF (-) 11:47	
Confirm Operation	Confirm Operations sub-page is to confirm the Local Control.	Of Local Control Dis \mathbf{A} Tips Tra Confirm? Tra Tra OK $(-)$ $11: 47$	
On Load Test	Operations sub-page navigates to more operating option in the display and click On Load Test to enter test mode.	OS Operations Local Control On Load Test (D) $23: 31$	
Confirm Operation	Confirm Operations sub-page is to confirm the On Load Test.	23 Operations Cr \boldsymbol{i} Limited Lo 30 s Or Of OK () $00: 04$	

Sub-page name	Sub-page function	Display
Test in Progress	The icon \square indicates that the test is started. Test can be interrupted during the process. NOTE: Select Esc and click ok to stop the test, ATSE will go back to Auto mode.	A Test in Progress Genset Start Delay 0000 s ESC () 00:08
Confirm Operation	Confirm Operations sub-page is to confirm the On Load Test.	ESC Δ 0

System Parameters Sub-Page

The below table provide the details of the System Parameters sub-pages:

Sub-page name	Sub-page function	Display	
System Parameters	Maintenance page navigates to more maintenance options in the display and click System Parameters to set nominal values.	Set \& Operate Operations System Param Application Time Delays	
Rated Voltage	Rated Voltage is a sub-page of System Parameters. System Parameters page navigates to more parameter options in the display and click Rated Voltage to set nominal values of voltage.	System Param Rated Voltage Rated Frequency Neutral Position () 01:51	
	Navigate to select different rate voltage: - 2 P : $220 \mathrm{~V}, 230 \mathrm{~V}, 240 \mathrm{~V}, 250 \mathrm{~V}$ - 3 P and $4 \mathrm{P}: 380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}$	System Param Rated Voltage $380 \mathrm{~V}$ 23:58	
Confirm Operation	Confirm Operations sub-page is to confirm the Rated Voltage and click ok to save changes.	ESC Δ OK	

Sub-page name	Sub-page function	Display	
Rated Frequency	Rated Frequency is a sub-page of System Parameters. System Parameters page navigates to more parameter options in the display and click Rated Frequency to set nominal values of frequency.	System Param Rated Voltage Rated Frequency Neutral Position	
	Navigate to select different rated frequency: - 50 Hz - 60 Hz	\& System Param Rated Frequency 50 Hz	
Confirm Operation	Confirm Operations sub-page is to confirm the Rated Frequency and click ok to save changes.		
Neutral Position	Neutral Position is a sub-page of System Parameters. System Parameters page navigates to more parameter options in the display and click Neutral Position to set nominal values of Neutral Position.	System Param Rated Voltage Rated Frequency Neutral Position (-) 01:58	
	Navigate to select different neutral position: - A-B-C-N - $\mathrm{N}-\mathrm{A}-\mathrm{B}-\mathrm{C}$	If System Param Neutral Position N-A-B-C Δ \checkmark OK	
Confirm Operation	Confirm Operations sub-page is to confirm the Neutral Position and click ok to save changes.	ESC	

Application Sub-Page

The below table provide the details of the Application sub-pages:

Sub-page name	Sub-page function	Display	
Application	Maintenance page navigates to more maintenance options in the display and click Application to set the type of source, threshold, time delays and transfer conditions.	Set \& Operate Operations System Param Application Time Delays	
Source Config	Source Config is a sub-page of Application. Application page navigates to more application options in the display and click Source Config to set the type of source.	Application Source Config Transfer Conditions Return Modes $\mathrm{SI}(\mathrm{N})$ Setpoints 03:33	
	Select different source type and priorities and click source configuration to set type of source - SI Utility (N)-SII Utility (A) - SI-Utility (N) / SII-Genset (A) - SI-Genset (A) / SII-Utility (N) - SII Utility (N)-SI Utility (A)	S. Application Source Config SI Utility(A)-SII Utility(N () $\quad 03: 35$	
Confirm Operation	Confirm Operations sub-page is to confirm the Source Config and click ok to save changes.	ESC	
Transfer Condition	Transfer Condition is a sub-page of Application. Application page navigates to more application options in the display and click Transfer Condition to set the conditions.	§ Application Source Config Transfer Conditions Return Modes SI(N) Setpoints (ㄷ) 03:33 ©A	
Phase Sequence Warning	Phase Sequence Warning is a sub-page of Transfer Condition. Transfer Condition page navigates to more condition options in the display.	Transfer Conditions Phase SEQ Warning Volt UNB Warning N Wrong Warning U>Ue Transfer (ㄴ) 03:38	

Sub-page name	Sub-page function	Display	
	Select Phase Sequence Warning to set the warning conditions: - On: enable phase sequence detection. - Off: disable phase sequence detection. NOTE: Default setting is shown as disabled.	Transfer Conditions Phase SEQ Warning \square 00:10	
Confirm Operation	Confirm Operations sub-page is to confirm the Phase Sequence Warning and click ok to save changes.		
Voltage Unbalance Warning	Voltage Unbalance Warning is a sub-page of Transfer Condition. Transfer Condition page navigates to more condition options in the display.		
	Select Voltage Unbalance Warning to set the warning conditions: - On: enable voltage unbalance detection. - Off: disable voltage unbalance detection. NOTE: Default setting is shown as disabled.	Transfer Conditions Volt UNB Warning \square () 02:05	
Confirm Operation	Confirm Operations sub-page is to confirm the Voltage Unbalance Warning and click ok to save changes.		
Neutral Wrong Warning	Neutral Wrong Warning is a sub-page of Transfer Condition. Transfer Condition page navigates to more condition options in the display.	Transfer Conditions Phase SEQ Warning Volt UNB Warning N Wrong Warning U>Ue Transfer () 02:06	

\begin{tabular}{|c|c|c|c|}
\hline Sub-page name \& Sub-page function \& \multicolumn{2}{|l|}{Display} \\
\hline \& \begin{tabular}{l}
Select Neutral Wrong Warning to set the warning conditions: \\
- On: enable neutral wrong detection. \\
- Off: disable neutral wrong detection. \\
NOTE: Default setting is shown as disabled.
\end{tabular} \& \begin{tabular}{l}
Transfer Conditions \\
N Wrong Warning

02:06
\end{tabular} \&

\hline Confirm Operation \& Confirm Operations sub-page is to confirm the Neutral Wrong Warning and click ok to save changes. \& \multicolumn{2}{|l|}{}

\hline Over Voltage Transfer \& | Over Voltage Transfer is a sub-page of Transfer Condition. |
| :--- |
| Transfer Condition page navigates to more condition options in the display. | \& \multicolumn{2}{|l|}{| §ु Transfer Conditions |
| :--- |
| Volt UNB Warning |
| N Wrong Warning |
| U>Ue Transfer |
| Abnormal FRQ Trans |
| () 02:08 A) |}

\hline \& | Select Over Voltage Transfer to set the conditions: |
| :--- |
| - On: enable over voltage detection. |
| - Off: disable over voltage detection. |
| NOTE: Default setting is shown as disabled. | \& \multicolumn{2}{|l|}{| § Transfer Conditions |
| :--- |
| U>Ue Transfer |}

\hline Confirm Operation \& Confirm Operations sub-page is to confirm the Over Voltage Transfer and click ok to save changes. \& \&

\hline Abnormal Frequency \& | Abnormal Frequency is a sub-page of Transfer Condition. |
| :--- |
| Transfer Condition page navigates to more condition options in the display. | \& | Transfer Conditions |
| :--- |
| N Wrong Warning U>Ue Transfer Abnormal FRQ Trans Gen Start Fail Warning () 02:08 | \&

\hline
\end{tabular}

Sub-page name	Sub-page function	Display	
	Select Abnormal Frequency to set the conditions: - On: enable abnormal frequency detection. - Off: disable abnormal frequency detection. NOTE: Default setting is shown as disabled.	Transfer Conditions Abnormal FRQ Trans () 02:08 ©	
Confirm Operation	Confirm Operations sub-page is to confirm the Abnormal Frequency and click ok to save changes.		
Gen Start Fail Warning	Gen Start Fail Warning is a sub-page of Transfer Conditions. Transfer Condition page navigates to more condition options in the display.	Transfer Conditions U>Ue Transfer Abnormal FRQ Trans Gen Start Fail Warning Neutral Loss Transfer (ㄷ) 02:09 (A)	
	Select Gen Start Fail Warning to set the conditions: - On: enable gen start fail warning detection. - Off: disable gen start fail warning detection. NOTE: Default setting is shown as disabled.	$\left.\begin{array}{l}\text { (3) Transfer Conditions } \\ \hline \text { Gen Start Fail Warning } \\ \text { OFF } \\ \text { (ㄷ) } 02: 09\end{array}\right]$ A.	
Confirm Operation	Confirm Operations sub-page is to confirm the Gen Start Fail Warning and click ok to save changes.		
Neutral Loss Transfer	Neutral Loss Transfer is a sub-page of Transfer Conditions. Transfer Condition page navigates to more condition options in the display.	Transfer Conditions Abnormal FRQ Trans Gen Start Fail Warning Neutral Loss Transfer	

Sub-page name	Sub-page function	Display	
	Select Neutral Loss Transfer to set the conditions: - On: enable neutral loss transfer detection. - Off: disable neutral loss transfer detection. NOTE: Default setting is shown as disabled.	Transfer Conditions Neutral Loss Transfer \square	
Confirm Operation	Confirm Operations sub-page is to confirm the Neutral Loss Transfer and click ok to save changes.		
Return Modes	Return Modes is a sub-page of Application. Application page navigates to more application options in the display.	SApplication Source Config Transfer Conditions Return Modes SI(N) Setpoints () $\quad 03: 33$	
	Select Return Modes to set the transfer modes. - Auto-Return - Non-Return	BApplication Return Modes Auto Return () 00:52 ©	
Confirm Operation	Confirm Operations sub-page is to confirm the Return Modes and click ok to save changes.		
N Setpoints	N Setpoints is a sub-page of Application. Application page navigates to more application options in the display and select \mathbf{N} to ASetpoints to set the threshold.	Application Source Config Transfer Conditions Return Modes SI(N) Setpoints () $\quad 03: 33$	

Sub-page name	Sub-page function	Display	
Under Voltage Dropout	Under Voltage Dropout is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Under Voltage Dropout. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under voltage dropout can be $70 \%-95 \%$ of rated voltage with step of 1%. - Default value is 85% - 3P/4P: 85\% Un (L-L) - 2P: 85\% Un (L-N)	SI(N) Setpoints Undervoltage Dropout Undervoltage Pickup Overvoltage Dropout Overvoltage Pickup	
Confirm Operation	Confirm Operations sub-page is to confirm the Under Voltage Dropout and click ok to save changes.		
Under Voltage Pickup	Under Voltage Pickup is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to \mathbf{A} Setpoints page navigates to more set point options in the display for Under Voltage Pickup. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under voltage pickup can be $85 \%-100 \%$ of rated voltage with step of 1%. - Default value is 90%.	SI(N) Setpoints Undervoltage Dropout Undervoltage Pickup Overvoltage Dropout Overvoltage Pickup (ㄷ) 02:46 O Under Voltage Pickup Threshold 90 \% Un (L-L) 360.0 V 02:44	
Confirm Operation	Confirm Operations sub-page is to confirm the Under Voltage Pickup and click ok to save changes.		

Sub-page name	Sub-page function	Display	
Over Voltage Dropout	Over Voltage Dropout is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Over Voltage Dropout. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of over voltage dropout can be $105 \%-135 \%$ of rated voltage with step of 1\%. - Default value is 110%.	SI(N) Setpoints Undervoltage Dropout Undervoltage Pickup Overvoltage Dropout Overvoltage Pickup (-) 02:46	
Confirm Operation	Confirm Operations sub-page is to confirm the Over Voltage Dropout and click ok to save changes.		
Over Voltage Pickup	Over Voltage Pickup is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Over Voltage Pickup. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of over voltage pickup can be $100 \%-115 \%$ of rated voltage with step of 1%. - Default value is 105%.	SI(N) Setpoints Undervoltage Dropout Undervoltage Pickup Overvoltage Dropout Overvoltage Pickup (-) 02:46 Overvoltage Pickup Threshold $\begin{gathered} \frac{105 \% \text { Un (L-L) }}{420.0 \mathrm{~V}} \\ \hline 02: 45 \end{gathered}$	
Confirm Operation	Confirm Operations sub-page is to confirm the Over Voltage Pickup and click ok to save changes.		

Sub-page name	Sub-page function	Display	
Under Frequency Dropout	Under Frequency Dropout is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Under Frequency Dropout. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under voltage pickup can be $85 \%-100 \%$ of rated voltage with step of 1%. - Default value is 90%.	SI(N) Setpoints Overvoltage Pickup Underfreq Dropout Underfreq Pickup Overfreq Dropout (ㄷ) 02:46	
Confirm Operation	Confirm Operations sub-page is to confirm the Under Frequency Dropout and click ok to save changes.		
Under Frequency Pickup	Under Frequency Pickup is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to \mathbf{A} Setpoints page navigates to more set point options in the display for Under Frequency Pickup. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under voltage pickup can be $85 \%-100 \%$ of rated voltage with step of 1%. - Default value is 90%.	OSI(N) Setpoints Overvoltage Pickup Underfreq D Dropout Underfreq Pickup Overfreq Dropout (ㄷ) 02:46OS Underfrequency Pickup Threshold 97.0 \% fn 48.5 Hz () $02: 45 \quad$ A)	
Confirm Operation	Confirm Operations sub-page is to confirm the Under Frequency Pickup and click ok to save changes.		

Sub-page name	Sub-page function	Display	
Over Frequency Dropout	Over Frequency Dropout is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Over Frequency Dropout. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under frequency dropout can be $101 \%-120 \%$ of rated voltage with step of 0.5\%. - Default value is 102%.	SI(N) Setpoints Overvoltage Pickup Underfreq Dropout Underfreq Pickup Overfreq Dropout (-) 02:46	
Confirm Operation	Confirm Operations sub-page is to confirm the Over Frequency Dropout and click ok to save changes.		
Over Frequency Pickup	Over Frequency Pickup is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Over Frequency Pickup. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of under frequency pickup can be $100 \%-115 \%$ of rated voltage with step of 0.5\%. - Default value is 101%.	SI(N) Setpoints Overfreq Dropout Overfreq Pickup Unbalance Rate	
Confirm Operation	Confirm Operations sub-page is to confirm the Over Frequency Pickup and click ok to save changes.		

Sub-page name	Sub-page function	Display	
Unbalance Rate	Unbalance Rate is a sub-page of \mathbf{N} Setpoints. \mathbf{N} to A Setpoints page navigates to more set point options in the display for Unbalance Rate. - The \% and real value will be displayed together. - \% can be set while the real value changed dynamically. - The range of unbalanced rate from 2% to 30\%. - Default value is 2%.	SI(N) Setpoints Overfreq Dropout Overfreq Pickup Unbalance Rate (ㄷ) 02:46 \& Unbalance Rate Unbalance Rate 5.0% 02:45	
Confirm Operation	Confirm Operations sub-page is to confirm the Unbalance Rateand click ok to save changes.		

Time Delays Sub-Page

The below table provide the details of the Time Delays sub-pages:

Sub-page name	Sub-page function	Display	
Time Delays	Maintenance page navigates to more maintenance option in the display and click Time Delays to set transfer times delay for different application.	Y Set \& Operate Operations System Param Application Time Delays () $03: 32$	
Transfer Delay	Transfer Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Transfer Delay to set transfer delay and click ok.	Time Delays Transfer Delay Re-Transfer Delay Center-off Delay Loadshed Delay () 02:51	
	- Select transfer delay and use up or down button to set it. The range of transfer time is from 0-1800 s with step of 1 s . - Default value is 0 s .	ESC	
Confirm Operation	Confirm Operations sub-page is to confirm the Transfer Delay and click ok to save changes.		
Re-Transfer Delay	Re-Transfer Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Re-Transfer Delay to set re-transfer delay and click ok.		
	- Select Re-Transfer Delay and use up or down button to set it. The range of re-transfer time is from 0-60 min with step of 1 s . - Default value is 0 s .		

Sub-page name	Sub-page function	Display	
Confirm Operation	Confirm Operations sub-page is to confirm the Re-Transfer Delay and click ok to save changes.		
Center-off Delay	Center-off Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Center-off Delay to set center-off delay and click ok.	Time Delays Transfer Delay Re-Transfer Delay Center-off Delay Loadshed Delay (D) 02:51	
	- Select Center-off Delay and use up or down button to set it. The range of centre off delay is from $0-30 \mathrm{~s}$ with step of 1 s . Default value is 0 s .	ESC	
Confirm Operation	Confirm Operations sub-page is to confirm the Center-off Delay and click ok to save changes.	ESC	
Loadshed Delay	Loadshed Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Load Shedding Delay to set load shedding delay and click ok.	Time Delays Transfer Delay Re-Transfer Delay Center-off Delay Loadshed Delay (-) 02:51	
	- Select load shedding and use up or down button to set it. - The range of load shedding delay is from 0-15 with step of 1 s . - Default value is 0 s .	? Time Delays Loadshed Delay 0 s () $02: 52$ A.	

Sub-page name	Sub-page function	Display	
Confirm Operation	Confirm Operations sub-page is to confirm the Load Shedding Delay and click ok to save changes.		
Genset Start Delay	Genset Start Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Genset Start Delay to set Genset delay and click ok.		
	- Select Genset Start Delay and use up or down button to set it. The range of Genset start time is from $0-120 \mathrm{~s}$ with step of 1 s . Default value is 0 s .	ESC Δ	
Confirm Operation	Confirm Operations sub-page is to confirm the Genset Start Delay and click ok to save changes.		
Genset Cooling Down Delay	Genset Cooling Down Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Genset Cooling Down Delay to set Genset cooling down delay and click ok.		
	- Select transfer delay and use up or down button to set it The range of genset cooling down delay is from 3600 s with step of 1 s . - Default value is 0 s .	Time Delays Gen Cool Delay	

Sub-page name	Sub-page function	Display	
Confirm Operation	Confirm Operations sub-page is to confirm the Genset Cooling Down Delay and click ok to save changes.		
Genset Failure Delay	Genset Failure Delay is a sub-page of Time Delays. Time Delays page navigates to more delay options in the display and click Genset Failure Delay to set Genset ready alarm delay and click ok.	? Time Delays Gen Start Delay Gen Cool Delay Gen Fail Delay () 02:51	
	- Genset failure delay is from $0 \sim 300 \mathrm{~s}$. Default value is 300 s . - Select transfer delay and use up or down button to set it. - The range of Genset ready is from 0-15 with step of 1 s . Default value is 0 s . NOTE: This function of Genset ready alarm can be disabled.	Time Delays Gen Fail Delay	
Confirm Operation	Confirm Operations sub-page is to confirm the Genset Failure Delay and click ok to save changes.		

Settings

The below table provide the details of the Settings sub-pages:

Sub-page name	Sub-page function	Display	
Settings	Set \& Operate page navigates to more set \& operate option in the display and click Settings for accessories commissioning, reset and password settings.	Set \& Operate Settings Language Date / Time 03:32	
Accessories	Accessories is a sub-page of Settings. Settings page navigates to more setting option in the display and click Accessories for commissioning.	Settings Accessories Quick View Auto Scroll Change Password System Logs () 02:56	
Modbus	Modbus is a sub-page of Accessories. Accessories page navigates to more accessory option in the display and click Modbus for commissioning. NOTE: If the module of Modbus is not inserted, the option will be empty.		
	Select the parameters as below: - Set the Address - Set the Baudrate NOTE: The odd/even parity is automatically recognized.	§ Modbus Address: 001 Baudrate: 19200 Parity: Even Stop Bit: 1.5 (D) $01: 39$ A.	
Confirm Operation	Confirm Operations sub-page is to confirm the Modbus and click ok to save changes.		
DI Test	DI Test is a sub-page of Accessories. Accessories page navigates to more accessory option in the display and click DI Test for commissioning. NOTE: If the module of remote test is not inserted, the option will be empty.	§Accessories Modbus DI Test 00:08	

Sub-page name	Sub-page function	Display	
	Set on load or off load test	DI TI Test On Load Test () $00: 12$	
Confirm Operation	Confirm Operations sub-page is to confirm the DI Test and click ok to save changes.	 ESC	
Quick View Auto Scroll	Quick View Auto Scroll is a sub-page of Settings. Settings page navigates to more settings option in the display and click Quick View Auto Scroll for commissioning. NOTE: If the module of Quick View Auto Scroll test is not inserted, the option will be empty.	© Settings ESC Accessories Quick View Auto Scroll Change Password System Logs (-) 02:56	
	Select Quick View Auto Scroll to set the conditions: - On: enable Quick View Auto Scroll detection. - Off: disable Quick View Auto Scroll detection. NOTE: Default setting is shown as disabled.	§ Quick View Auto Quick View Auto Scroll OFF () $02: 39$	
	Select Quick View Auto Scroll and use up or down button to set it. The range of quick view auto scroll time is from $0 \sim 300 \mathrm{~s}$ with step of 1 s . Default value is 5 s .	Quick View Auto Quick View Auto Scroll Scroll Time ON O	
Change Password	Change Password is a sub-page of Accessories. Accessories page navigates to more accessory option in the display and click Change Password to change password.	Settings Accessories Quick View Auto Scroll Change Password System Logs (ㄷ) 02:56	

Sub-page name	Sub-page function	Display	
	Select the parameters to change password: - Input 4 digital code to create new password. NOTE: To change or reset the password: 1. Change to handle mode. 2. Power OFF and ON the ASTE. 3. Press OK and ESC button for 10 seconds. NOTE: The step 3 should be performed within 1 minute after step 2.	B Change Password $\frac{0^{* * * *}}{\substack{* * * * \\ * * * *}}$ Input Old Password () 00:27 A.	
System Logs	System Logs is a sub-page of Accessories. Accessories page navigates to more accessory option in the display and click System Logs.	Settings Change Password System Logs Reset Threshold \& tim. () $\quad 02: 56$$\square$	
	Select System Logs and use up or down button to set it.		

Sub-page name	Sub-page function	Display	
Reset to Default	Reset to Default is a sub-page of Settings. Accessories page navigates to more setting option in the display and click Reset to Default to reset the controller. List of values which can be set: - Under Voltage - Over Voltage - Under Frequency - Over Frequency - Unbalance Factor - Transfer Delay (T2) - Center-Off Delay (T4) - Re-Transfer Delay (T6) - Genset Start Delay (T7) - Loadshed Delay (T8) - Genset Cool Delay (T9) - Genset Fail Delay (T10) - On Load Test Delay (T13) - Off Load Test Delay (T14)	Settings Change Password System Logs Reset Threshold \& tim. 02:56	
Confirm Operation	Confirm Operations sub-page is to confirm the DI Test and click ok to save changes.	S. Settings Ch \boldsymbol{A} Tips Sy Confirm? Re n. OK (L) $00: 59$	

Language

The below table provide the details of the Language sub-pages:

Sub-page name	Sub-page function	Display	
Language	Set \& Operate page navigates to more set \& operate option in the display and click Language to select the preferred language.	SS Set \& Operate Settings Language Date / Time () 03:32 A.	
	Select the display language		
Confirm Operation	Confirm Operations sub-page is to confirm the Language and click ok to save changes.		

Date and Time

The below table provide the details of the Date and Time sub-pages:

Sub-page name	Sub-page function	Display	
Date and Time	Set \& operate page navigates to more set \& operate option in the display and click Date and Time to set the time.		
	Select the parameters below: - Select timer by year/month/day. - Select timer by hour/minutes/seconds.	$\begin{gathered} \text { P Date / Time } \\ \hline 2020-09-02 \\ \text { YY MM DD } \\ 01: 01: 31 \\ \text { HH MM SS } \\ \hline \text { () } 01: 01 \end{gathered}$	
Confirm Operation	Confirm Operations sub-page is to confirm the Date and Time and click ok to save changes.		

External HMI

The External HMI is used to display the settings parameters remotely. It displays the same parameters as shown on ATSE and has higher priority. There are two parts of External HMI:

1. External HMI base, which is mounted on the panel doors.
2. LCD screen with embedded HMI.

NOTE: The function module TPCDIO15 and HMI cable with RJ45 port is needed to connect the external HMI.

Operations

What's in This Chapter

Overview 124
Automatic HMI with Rotary Switch as Embedded HMI 125
Active Automatic HMI with LCD Display as Embedded HMI 133
Control Mode 146

Overview

ATSE is an equipment containing one or more switching devices for disconnecting load circuits from one supply and connecting to another supply. It is a self-acting transfer switching equipment, including all necessary sensing inputs, monitoring, and control logic for transferring operations.

The two types of transition are:

1. Open transition
2. Delayed transition

Open Transition

Open transition is a process to break before the transfer operation. It is done intentionally to break the load current from one source prior to making it to the other source, such that the load is not supplied for a period of time.

Delayed Transition

When the delay transition is activated, the switch will stay in an open circuit (main contact will stay in off position for a period of time. It is applicable for 2 poles, 3 poles, and 4 poles). This delay allows the residual voltage of the load to decay within the allowable range.

Condition of Delayed Transition

The delayed transition is recommended when motors are located on the load side. Indeed, in the case of voltage loss on motors, the following may happen:

- When the inductive load loses power, it will generate self excitation voltage due to inertia.
- The self excitation voltage needs a certain time constant to attenuate.
- When the self-excited voltage is 180° different from the voltage of another power supply and superimposed, it will cause about twice the voltage impact.
- When the resistance of the motor is fixed, the current will also be increased to 2 times. In addition, the starting current of the motor is large (6-8 times rated current), so the current shock of 12-16 times may occur.
The setting time of the delay shall ensure that the time length of the motor disconnected from the power supply is equal to or greater than 1.5 open circuit AC time constants of the motor; generally $0.5-1 \mathrm{~s}$.

Automatic HMI with Rotary Switch as Embedded HMI

Preferable Source Selection

TransferPacT Automatic HMI provide an easy way to select the preferred source as normal source.

When the Genset is at normal power and the Utility is not so stable, make the selection as below:

For TransferPacT Automatic: To select the preferred source, use dip switch to make the selection.

Transfer Condition

Overview

The following are the auto-transfer conditions:

- Voltage deviation: Controller monitors two sources, and uses over-voltages and under-voltages thresholds as conditions of source transfer.
- Frequency deviation: Controller monitors two sources, and uses overfrequency and under-frequency thresholds as conditions of source transfer.

Threshold

TransferPacT Automatic (Rotary)

Description	Settings	Default setting \% of nominal	Adjustment range	Note
Voltage	Delta Dropout (under and over voltage $)$	10%	$4->20 \%$	Step of 2\%
	Delta Pickup	20% of delta drop out	fixed	fixed
	Delta Dropout	5%	$2->10 \%$	Step of 1%
	Delta Pickup	20% of delta drop out	fixed	fixed

The accuracy of voltage sensing is 1%.
The accuracy of frequency sensing is 0.1%.
Voltage Dropout and Pickup

- Over voltage dropout value: Above this value, the voltage is out of range and transfer is initiated.
- Over voltage pickup value: When voltage goes back from over frequency, it is a condition to go back to normal situation.
- Under voltage dropout value: Below this value, the frequency is out of range and transfer is initiated.
- Under voltage pickup value: When voltage goes back from under voltage, it is a condition to go back to normal situation.

Frequency Dropout and Pickup

- Over frequency dropout value: Above this value, the frequency is out of range and transfer is initiated.
- Over frequency pickup value: When frequency goes back from over frequency, it is a condition to go back to normal situation.
- Under frequency dropout value: Below this value, the frequency is out of range and transfer is initiated.
- Under frequency pickup value: When frequency goes back from under frequency, it is a condition to go back to normal situation.

Voltage and Frequency Setting

For TransferPacT Automatic: The rated voltage needs to be set using the dip switch.

230	240
400	415
220	
380	

Undervoltage Thresholds

Setting of Undervoltage Threshold on TransferPacT Automatic

Field	Description
Default value	- Dropout: 10% - Pickup: 20\% of delta dropout
Range	Delta voltage ranges from 4\%-20\% of rated voltage: It could be 4-6-8-10-12-14-16-18-20\%.
Differential	The differential between dropout and pickup on automatic HMI is fixed. The differential is set at 20% of the delta value.
Sequence of events	- When a sensor detects a voltage below the dropout set voltage for a period longer than the time delay, it will deem the voltage for out of range. - When a sensor detects a voltage at or above the pickup point, it will deem the voltage as acceptable.
Example of calculation on undervoltage of TransferPacT Automatic	For example, Ue $=400 \mathrm{~V}$, Dropout $10 \%=40 \mathrm{~V}$, Differential between dropout and pickup $=40 \mathrm{~V} * 20 \%=8 \mathrm{~V}$ Undervoltage dropout is $400 \mathrm{~V}-40 \mathrm{~V}=360 \mathrm{~V}$ Pickup $=360 \mathrm{~V}+8 \mathrm{~V}=368 \mathrm{~V}$

Overvoltage Thresholds

Setting of Overvoltage Threshold on TransferPacT Automatic

Field	Description
Default value	- Dropout: 10% - Pickup: 20% of delta dropout
Range	Delta voltage ranges from $4 \%-20 \%$ of rated voltage: It could be 4-6-8-10-12-14-16-18-20\%. Default value: 10\%
Differential	The differential between dropout and pickup on automatic HMI is fixed. The differential is set at 20% of the delta value.
Sequence of events	- When a sensor detects a voltage below the dropout set voltage for a period longer than the time delay, it will deem the voltage for out of range. - When a sensor detects a voltage at or above the pickup point, it will deem the voltage as applicable.
Example of calculation on overvoltage of TransferPacT Automatic	For example, Ue $=400 \mathrm{~V}$, Dropout $10 \%=40 \mathrm{~V}$, Differential between dropout and pickup $=40 \mathrm{~V} * 20 \%=8 \mathrm{~V}$ overvoltage dropout is $400 \mathrm{~V}+40 \mathrm{~V}=440 \mathrm{~V}$ Pickup $=440 \mathrm{~V}-8 \mathrm{~V}=432 \mathrm{~V}$

Under Frequency

Setting of Under Frequency for TransferPacT Automatic

Field	Description
Default value	- Dropout: 5% - Pickup: 20\% of delta dropout
Range	Delta frequency : $2 \%-10 \%$ of rated frequency and could be $2-3-4-5-6-7-8-9-10 \%$..
Differential	The differential between dropout and pickup is fixed on automatic HMI and this gap is set at 20\% of the delta.
Sequence of events	- When a sensor detects a frequency below the set drop-out frequency for a period longer than the time delay, it deems the voltage is out of range. - When the sensor detects a frequency at or above the pick-up point, it deems the frequency as acceptable.
Example of calculation on underfrequency of TransferPacT Automatic	For example, Fe=50 Hz, Dropout 5\%=2.5 Hz, Differential between dropout and pickup $=2.5 \mathrm{~Hz}$ * $20 \%=0.5 \mathrm{~Hz}$ Underfrequency dropout is $50 \mathrm{~Hz}-2.5 \mathrm{~Hz}=47.5 \mathrm{~Hz}$ Pickup $=47.5 \mathrm{~Hz}+0.5 \mathrm{~Hz}=48 \mathrm{~Hz}$

Over Frequency

Setting of Over Frequency on TransferPacT Automatic

Field	Description
Default value	• Dropout: 5%
Range	Pickup: 20% of delta dropout

Time Delay

-		Adjust/Range	Default	
Symbol	Display	Definition	Automatic	Automatic
T2	Transfer Delay	Confirmation delay on source power failure	U-U: $0,1,2,3,5,10,20,30$, 60 s U-G: 5 s	U-U: 3s U-G: 5 s
T4	Center-off Delay	OFF position delay	0s, 5s	0s
T6	Re-transfer Delay	Confirmation delay to re-transfer on normal source	$0,1,2,3,5,10,20,30,60-$ min	1 min
T7	Genset Start Delay	Delay to start Genset	U-U: 0s U-G: $0,1,2,3,5,10,20,30,60 s$	U-G: 3s
T8	Loadshed Delay	Delay to load shedding	N/A	N/A
T9	Genset cool delay	Genset cooling down delay	N/A	N/A
T10	Genset fail delay	Genset alarming failure detection time	N/A	U00s
T13	On load test delay	Time duration to run for test process on load.	N/A	N/A
T14	Off load test delay	Time duration to run for test process off load.	N/A	N/A

NOTE: When the test delay for TransferPacT automatic is requisite, contact Schneider Electric service team.

T2: Transfer Delay

Field	Description
Applications	\bullet • \quad Confirm connected source has failure. Default values Range The default value is 5 s. Adjust For Automatic: $0,1,2,3,5,10,20,30,60 \mathrm{~s}$.

T4: Center-Off Delay

Field	Description
Applications	• Time delay applied to the center-off position O when Position I and Position II are transferring, it stops at Position O to protect inductive load. Default values The delay is used for both process of transfer to N and A.
The default value is 0 s.	
Adjust	For Automatic: 2 settings : 0 s or 5 s.

T6: Re-Transfer Delay

Field	Description
Applications	• Time delay applied when transferring from R to N in the Auto-Return mode. This delay is intended to measure the N and R during the delay.
	• If N is abnormal, the timer will stop and the re-transfer is cancelled.
Default values	The default value is 60 s.
Range	For Automatic: $0,1,2,3,5,10,20,30,60 \mathrm{~min}$.
Adjust	For Automatic: Fix value for automatic switch.

T7: Genset Start Delay

Field	Description
Applications	• Genset startup time delay (time delay before sent the signal to start Genset), available for U-G applications. The time delay only available when there is external power or select the Genset start module.
Default values	The default value is 3 s.
Range	For Automatic: $0,1,2,3,5,10,20,30,60 \mathrm{~s}$
Adjust	For Automatic: Fix value for automatic switch.

T8: Loadshed Delay

Field	Description
Applications	- Load shedding delay, for U-U/U-G. - Load shed: The alternatepower (Genset) sometimes may not afford all loads. A signal from controller will shed some loads. - Need customer to decide which load can be shed.
Default values	The default value is 0 s .
Range	For Automatic: Not applicable.
Adjust	For Automatic: Not applicable.

T9: Genset Cool Delay

Field	Description
Applications	• \quad Delay between closing of N source and send the signal to stop the Genset. - When propose is to keep the generator running at no load for some time before shutting / cooling down. NOTE: To prevent any risk of Genset damage due to Genset stopping before the end of its starting process: Genset cooling time delay can only start after the end of Genset start time delay or after SII is within tolerances since source return time delay.
Default values	For Automatic: Not applicable.
Range	For Automatic: Not applicable.
Adjust	For Automatic: Not applicable.

T10: Genset Fail Delay

Field	Description
Applications	- After sending the Genset start signal, controller will wait a time duration T10 until Genset is ready. - The ATSE shall rise the Genset alarm, if genset is not started while T10 timer is ended (if enabled). - The ATSE shall reset the Genset alarm, when the R source is in Range or when the N source is in Range. - The time delay is only available when there is external power.
Default values	- The default value is 300 s . - The alarm can be enabled or disabled. Default as disabled.
Range	For Automatic: 300s.
Adjust	For Automatic: Not applicable.

T13: On Load Test Delay

Field	Description
Applications	Time duration for On load test process. It will rise the alarm if test is not finished in the time duration.
Default values	For Automatic: Not applicable.
Range	For Automatic: Not applicable.
Adjust	For Automatic: Not applicable.

T14: Off Load Test Delay

Field	Description
Applications	Time duration for off load test process. It will rise the Alarm if test is not finished in the time duration.
Default values	For Automatic: Not applicable.
Range	For Automatic: Not applicable.
Adjust	For Automatic: Not applicable.

Active Automatic HMI with LCD Display as Embedded HMI

Preferable Source Selection

TransferPacT Active Automatic provide an easy way to select the preferred source as normal source.

When the Genset is at normal power and the Utility is not so stable, make the selection as below:

For TransferPacT Active Automatic: To select the preferred source, go to Source Configuration page to make the selection.

Utility-Utility Operation

1. Detect the normal source contingency (Utility).
2. Transfer the load to replace alternate source (Utility) when normal source is out of tolerance.
3. Re-transfer to normal source when it is recovered if auto return mode is set.

Utility-Generator Operation

1. Detect the normal source contingency (Utility).
2. Send out Genset start signal when normal source is out of tolerance.
3. Transfer the load to replace source (generator) when generator is ready.
4. Re-transfer to normal alternate source when it is recovered if auto return mode is set.
5. Send the Genset cool down signal after re-transfer to normal source.

Status Description Based on Source Selection

U-U Application

If U-U application is selected, then both Source I and Source II indicator (LED) will have two status:

- ON (OK)
- Blink (Out of Range)

LED Indication	Status Description
LED ON (on both sources)	Source present and in the range The display will show OK and LED be ON ESC
LED Blinking (on N source)	When there is power contingency. The display will show the SI status(Out Range) and current application mode.(vice versa for SII)

U-G Application

If U-G application is selected, then Source II/Source I (the one connect to Genset) will have three status:

- ON (OK)
- Blink (Out of Range)
- OFF if the Genset start signal (need accessory TPCDIO17) is not active

LED Indication	Status Description
LED OFF (on Source A) LED ON (on Source N)	Genset (for example, SII) start signal is not active The display will show OFF ESC
LED Blinking (on Source A and Source N)	Genset(SII, e.g.)start signal is sent out, genset is activating but not ready. The display will show Out Range ESC
LED ON (on both sources) LED Blinking (on both Source A)	Genset is running and in range, load is on SII. The display will show ON on SI and ON on SII ESC

The table below explains the status and their occurrences:

Status	Occurrences
OFF	The status is OFF, when the detected source is genset and the gen start signal is not sent.
OK	The status is OK, when all the enabled detection related to this source are in range.
Out Range	The status is Out Range, when any enabled detection related to this source are out of range.

The number of possible values depends on the source setting and transfer status:

If...	Then...
the source is a Utility source	two possible values are OK and Out Range.
the source is a Genset source	three possible values are OK, Out Range and OFF when genset start singal not sent, out of range when genset is starting or enabled detection related to genset is not in range.

Transfer Condition

Overview

The following are the auto-transfer conditions:

- Voltage deviation: Controller monitors two sources, and uses over-voltages and under-voltages thresholds as conditions of source transfer.
- Frequency deviation: Controller monitors two sources, and uses overfrequency and under-frequency thresholds as conditions of source transfer.
- Phase rotation: Controller detect two sources phase sequence as the condition of source transfer (*Active Automatic HMI only).

Threshold

TransferPacT Active Automatic (LCD)

Description	Settings	Default setting \% of nominal	Adjustment range increments of 1\%	Note
Normal source voltage	Under voltage Dropout	85%	$70 \%-95 \%$	Step of 1\%
	Under voltage Pickup	90%	$85 \%-100 \%$	Step of 1\%
	Over voltage Dropout	110%	$105 \%-135 \%$	Step of 1\%
	Over voltage Pickup	105%	$100 \%-115 \%$	Step of 1\%
	Minimum differential between Dropout and pickup	2%	-	Step

Description	Settings	Default setting \% of nominal	Adjustment range increments of 1\%	Note
Alternate source frequency	Under Frequency Dropout	96%	$80 \%-98 \%$	Step of 0.5%
	Under Frequency Pickup	97%	$85 \%-100 \%$	Step of 0.5%
	Over Frequency Dropout	102%	$101 \%-120 \%$	Step of 0.5%
	Over Frequency Pickup	101%	$100 \%-115 \%$	Step of 0.5%
	Minimum differential between Dropout and pickup	0.50%	-	
Voltage unbalance		5% Default as disabled	$2 \%-30 \%$	
Phase rotation	enabled			
Neutral wrong connection	enabled			
Neutral lost		disabled		unbalance rate

The accuracy of voltage sensing is 1%.
The accuracy of frequency sensing is 0.1%.

Voltage Dropout and Pickup

- Over voltage dropout value: Above this value, the voltage is out of range and transfer is initiated.
- Over voltage pickup value: When voltage goes back from over frequency, it is a condition to go back to normal situation.
- Under voltage dropout value: Below this value, the frequency is out of range and transfer is initiated.
- Under voltage pickup value: When voltage goes back from under voltage, it is a condition to go back to normal situation.

Frequency Dropout and Pickup

- Over frequency dropout value: Above this value, the frequency is out of range and transfer is initiated.
- Over frequency pickup value: When frequency goes back from over frequency, it is a condition to go back to normal situation.
- Under frequency dropout value: Below this value, the frequency is out of range and transfer is initiated.
- Under frequency pickup value: When frequency goes back from under frequency, it is a condition to go back to normal situation.

Voltage and Frequency Setting

For TransferPacT Active Automatic: The rated voltage needs to be set using the LCD display.

Undervoltage Thresholds

Setting of Undervoltage Threshold on TransferPacT Active Automatic

Field	Description
Default value	- Dropout: 85% of the rated voltage. - Pickup: 90% of the rated voltage.
Range	- Range for falling voltage (dropout) is $70 \%-95 \%$ of the rated voltage. - Range for return voltage (pickup) is $85 \%-100 \%$ of the rated voltage.
Adjustable	The adjustable range for an undervoltage threshold is 1%.
Differential	- The differential between dropout and pickup is equal to 2% of rated voltage.
On LCD display	- If minimum 2% differential of rated voltage rule is broken during dropout setting, the pickup value will be modified dynamically (pickup = dropout and 2\%) to keep the rule.
On Modbus	Modbus register write: The dropout value is always accepted. The pickup value will be modified to a value (pickup = dropout and 2%) when the pickup value does not comply the minimum differential.
Sequence of events	- When a sensor detects a voltage below the dropout set voltage for a period longer than the time delay, it will deem the voltage for out of range. - When a sensor detects a voltage at or above the pickup point, it will deem the voltage as acceptable.

Overvoltage Thresholds

Setting of Overvoltage Threshold on TransferPacT Active Automatic

Field	Description
Default value	- Dropout: 110% of the rated voltage. - Pickup: 105% of the rated voltage.
Range	- Range for falling voltage (dropout) is $105 \%-135 \%$ of the rated voltage. - Range for return voltage (pickup) is $100 \%-105 \%$ of the rated voltage.
Adjustable	The adjustable range for an overvoltage threshold is 1%.
Differential	- The default differential between dropout and pickup is equal to 2% of rated voltage.
On LCD display	- If minimum 2% differential of rated voltage in default rule is broken during dropout setting, the pickup value will be modified (pickup=dropout- 2%) to keep the rule.
On Modbus	The dropout value is always accepted. The pick-up value will be modified to a value (pickup= dropout $\sim 2 \%$) when the pick-up value does not comply the minimum differential.
Sequence of events	- When a sensor detects a voltage below the dropout set voltage, for a period longer than the time delay, it will deem the voltage for out of range. - When a sensor detects a voltage at or above the pickup voltage, it will deem the voltage as acceptable.

Under Frequency

Setting of Under Frequency for TransferPacT Active Automatic

Field	Description
Default value	- Dropout: 95% of the rated frequency. - Pickup: 97% of the rated frequency.
Range	- Range for falling voltage (dropout) is $80 \%-95 \%$ of rated voltage. - Range for return voltage (pickup) is $85 \%-100 \%$ of rated voltage.
Adjustable	The adjustable step for under frequency threshold is 0.5\%.
Differential	- The default differential between dropout and pickup is equal to 0.5% of rated frequency.
On LCD display	- If minimum differential rule is broken during dropout setting, the pickup value will be modified (pickup $=$ dropout -0.5%) to keep the rule.
On Modbus	Dropout value is always accepted, if the pickup value doesn't comply the minimum differential, the pickup value will be modified to value (pickup $=$ dropout -0.5%).
Sequence of events	- When a sensor detects a frequency below the set drop-out frequency for a period longer than the time delay, it deems the voltage is out of range. - When the sensor detects a frequency at or above the pick-up point, it deems the frequency as acceptable.

Over Frequency

Setting of Over Frequency on TransferPacT Active Automatic

Field	Description
Default value	- Dropout: 105% of the rated frequency. - Pickup: 101% of the rated frequency.
Range	- The over frequency sensing range for a falling voltage (dropout) is $101 \%-120 \%$ of rated voltage. - The over frequency sensing range for a return voltage (pickup) is $100 \%-115 \%$ of rated voltage.
Adjustable	The adjustable step for over frequency threshold is 0.5\%.
Differential	- The default differential between dropout and pickup $=0.5 \%$ of rated frequency.
On LCD	- If minimum differential (0.5% of rated in default) rule is broken during dropout setting, the pickup value will be modified (pickup $=$ dropout -0.5%) to keep the rule.
On Modbus	Dropout value is always accepted, if the pickup value do not comply the minimum gap, the pickup value will be modified to value (pickup = dropout -0.5%).
Sequence of events	- When a sensor detects a frequency below the set dropout frequency for a period longer than the time delay, it deems the voltage is out of range. - When the sensor detects a frequency at or above the pickup point, it deems the frequency as acceptable.

Voltage Unbalance

Field	Description
Applications	The single-phase loading causes a voltage unbalance. When the maximum deviation from average voltage is greater than a user-specific value of the average voltage, the sensor indicates a failure. $-\quad$ The voltage unbalance is only for 3P 3-wire. -
Default value voltage unbalance is only for TransferPacT Active Automatic.	

Phase Rotation

Field	Description
Applications	This feature monitors the phase rotation of the source opposite from the connected source. In order to check phase rotation, both voltage sources must be applied. It protects against equipment damage by preventing transfer to a source that is out of phase. This occurs during new installations or after storm damage or generator rewiring (U-G). NOTE: Only A-B-C sequence is correct and sequence C-B-A is wrong. It is available only for TransferPacT Active Automatic.
Default value	This feature could be enabled or disabled. By default, it is enabled.

Transfer Count

The TransferPacT controller can count successful and failure transfer counts separately.

NOTE: Only the TransferPacT Active ATSE will display the transfer count.

Neutral Wrong Connections Detections

Field	Description
Applications	• An alarm is raised when this function is enabled to prevent wrong connection of neutral cable. $-\quad$ When this function is enabled and neutral wrong is detected, an alarm will be shown to the user on HMI (only Active Automatic HMI).
Default value	This feature could be enabled or disabled. By default, it is disabled.
Detection criteria	Consider only the normal power source, and conclude if neutral wrong according to check Van, Vbn, Vcn, Vab, Vbc, Vca. Example: Consider the neutral wrong when the nominal power source is 380 V. For 380 V system, line voltage should be 380 V and phase voltage should be 220 V.

Neutral Loss

Field	Description
Applications	• An alarm is raised when this function is enabled to prevent wrong connection, miss connection or disconnection caused by interior or exterior impacts of neutral cable.
Default value	This feature could be enabled or disabled. By default, it is disabled. The LED of source will blink to warn when there is neutral loss after the sensor is enabled.
Detection criteria	When the load is connected to the power source and live, the unbalanced loads are detected.

Time Delay

-			Adjust	Range	Default
Symbol	Display	Definition	Active automatic	Active automatic	Active automatic
T2	Transfer Delay	Confirmation delay on source power failure	0.1 s from $0-1 \mathrm{~s}$. 1 s when >1 s.	0-1800s	3s
T4	Center-off Delay	OFF position delay	1s	0-30s	Os
T6	Re-transfer Delay	Confirmation delay to re-transfer on normal source	1s	0-3600s	60s
T7	Genset Start Delay	Delay to start Genset	1s	0-120s	3s
T8	Loadshed Delay	Delay to load shedding	1s	0-15s	Os
T9	Genset cool delay	Genset cooling down delay	1s	0-3600s	60s
T10	Genset fail delay	Genset alarming failure detection time	1s	15s-300s	300s
T13	On load test delay	Time duration to run for test process on load.	1s	Unlimited: 0s Limited:1s-1800s	Unlimited: 0s Limited: 30s
T14	Off load test delay	Time duration to run for test process off load.	1s	Unlimited: 0s Limited:1s-1800s	Unlimited: 0s Limited: 30s

T2: Transfer Delay

Field	Description
Applications	• Confirm connected source has failure. • • Teasure the target source power (for example voltage and frequency) during the time delay. Ralues Range For Active Automatic: 3 s.
Adjust	For Active Automatic: $0-1800 \mathrm{~s}$.

T4: Center-Off Delay

Field	Description
Applications	•Time delay applied to the center-off position O when Position I and Position II are transferring, it stops at Position O to protect inductive load. The delay is used for both process of transfer to N and A. Default values Range The default value is 0 s. Adjust For Active Automatic: $0-30 \mathrm{~s}$.

T6: Re-Transfer Delay

Field	Description
Applications	- Time delay applied when transferring from R to N in the Auto-Return mode. This delay is intended to measure the N and R during the delay. - If N is abnormal, the timer will stop and the re-transfer is cancelled. - If R is abnormal but Source N is normal, the switch will transfer immediately.
Default values	The default value is 60 s .

Field	Description
Range	For Active Automatic: 0-60s.
Adjust	For Active Automatic: Step of 1s for Active Automatic.

T7: Genset Start Delay

Field	Description
Applications	• Genset startup time delay (time delay before sent the signal to start Genset), available for U-G applications. The time delay only available when there is external power or select the Genset start module.
Default values	The default value is 3 s.
Range	For Active Automatic: $0-120 \mathrm{~s}$.
Adjust	For Active Automatic: Step of 1 s for Active automatic.

T8: Loadshed Delay

Field	Description
Applications	• Load shedding delay, for U-U/U-G. Default values \quadLoad shed: The alternatepower (Genset) sometimes may not afford all loads. A signal from controller will shed customer to decide which load can be shed. Range The default value is 0 s. Adjust For Active Automatic: $0-15 \mathrm{~s}$

T9: Genset Cool Delay

Field	Description
Applications	- \quad Delay between closing of N source and send the signal to stop the Genset. - When controller restarts, this time delay will be running also at U-G mode. NOTE: To prevent any risk of Genset damage due to Genset stopping before the end of its starting process: Genset cooling time delay can only start after the end of Genset start time delay or after SII is within tolerances since source return time delay.
Default values	The default value is $60 \mathrm{s}$.
Range	For Active Automatic: $0-60$ min.
Adjust	For Active Automatic: Step of 1s for Active automatic.

T10: Genset Fail Delay

Field	Description
Applications	- After sending the Genset start signal, controller will wait a time duration T10 until Genset is ready. - The ATSE shall rise the Genset alarm, if genset is not started while T10 timer is ended (if enabled). - The ATSE shall reset the Genset alarm, when the R source is in Range or when the N source is in Range. - The time delay is only available when there is external power.
Default values	- The default value is 300 s . - The alarm can be enabled or disabled. Default as disabled.
Range	For Active automatic: 15-300s.
Adjust	For Active Automatic: Step of 1s for Active automatic.

T13: On Load Test Delay

Field	Description
Applications	Time duration for On load test process. It will rise the alarm if test is not finished in the time duration.
Default values	• Default as unlimited(0 s), has to manual stop test procedure.
Range	For Active Automatic: 1 1-1800s.
Adjust	For Active Automatic: Step of 1s for Active automatic.

T14: Off Load Test Delay

Field	Description
Applications	Time duration for off load test process. It will rise the Alarm if test is not finished in the time duration.
Default values	• Default as unlimited(0 s), has to manual stop test procedure. Range If select limited, default as 30s.
Adjust	For Active automatic: 1-1800s.

Control Mode

Overview

The control mode is used to operate TSE in different applications. The TransferPacT Active ATSE contains every function needed with eight control modes:

- Auto mode
- Test mode
- Voluntary transfer mode
- Local control mode
- Transfer inhibit mode
- Fire protection mode
- Force to off mode
- Handle transfer mode

The TransferPacT Automatic contains below control modes:

- Auto mode
- Test mode
- Voluntary transfer mode
- Transfer inhibit mode
- Fire protection mode
- Force to off mode
- Handle transfer mode

Priority of Control Mode

Type of mode	Handle	Force	Fire	Inhibit	Local	Voluntary	Test	Auto
Handle transfer mode	-	I	I	I	I	I	I	I
Force to off mode	x	-	I	I	I	I	I	I
Fire protection mode	x	x	-	I	I	I	I	I
Transfer inhibit mode	x	x	x	-	I	I	I	I
Local control mode	x	x	x	x	-	I	I	I
Voluntary transfer mode	x	x	x	x	x	-	I	I
Test mode	x	x	x	x	x	x	-	I
Auto mode	x	x	x	x	x	x	x	-
"-" $=$ No caution "I" $=$ Interrupt $\mathrm{X}=$ Ignore								

Auto Control Mode

ATSE works on auto control mode normally. The controller monitors the real time values of both the sources. When there is source contingency, the transfer action will be energized to keep the power continuity for critical source.

Auto mode is supports U-G or U-U applications.
NOTE: Auto transfer will not be active, if transfer action damages driving system (for example, both sources are out of range, TSE refuses to transfer).
There are two types of auto control mode:

- Auto-return
- Non-return

Naming	Condition for stay on A situation return	
Power source definition	N available A available	N available
Auto-return	Switch to N	Switch to N
Non-return	Stay at A	Switch to N

Auto-Return

The auto-return has two modes as below:

- When the voltage on the N source exceeds the threshold (overvoltage, undervoltage, over frequency, under frequency) or does not exist, the ATSE will be transferred to the A source.
- When the voltage on the N source is within the threshold range, the ATSE will be transferred to N source.
The process of transfer can be controlled by time delay.

Transfer Process for Auto-Return U-U Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	Load status
T2	Transfer delay
T8	Loadshed delay
T4	Center-off delay

Symbols	Description
T6	Re-Transfer delay
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	
\quad : No power	

Transfer Logic for Auto-Return U-U Application

Transfer Logic
T 2 will reset if N becomes available or A becomes unavailable.

Retransfer Logic

- T2 will reset if N becomes unavailable
- T6 Reset if N becomes unavailable
- During T6, if A is not available it will keep to count T6 if the rest time of T6 is shorter than T2. Other wise it goes to T2
- Retransfer principles when source A is ok, retransfer goes to T6 when source A is not ok and when source A is utility, retransfer goes to T2. If source A is Genset and not ok, retransfer delay is 0 .

Transfer Process for U-G Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	Load status
T7	Genset start delay
T2	Transfer delay
T8	Loadshed delay
T4	Center-off delay

Symbols	Description
T6	Re-Transfer delay
T9	Genset cool delay
Key	
O: OFF (circuit open) I: ON (circuit closed) \quad : No power	

Transfer Logic for U-G Application

Transfer Logic

- T2 will reset if N becomes unavailable
- If disable Genset Start Fail Warning, T10 will not be counted
- The whole transfer will be canceled if N becomes available during T7

Retransfer Logic

- T2 will reset if N becomes unavailable
- T6 Reset if N becomes unavailable
- During T6, if A is not available it will keep to count T6 if the rest time of T6 is shorter than T2. Other wise it goes to T2

Non-Return

In the non-return mode, after auto transfer to replacement, the ATSE will be connected to the alternate source until:

- An external order is given to transfer back to N source.
- The alternate source is out of range. In such case, the ATSE controller will transfer back to the N source to maintain power availability.
There will be only one time power off, when there is normal power outage.

Transfer Process of Non-return for U-U Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	Load status
T2	Transfer delay
T8	Loadshed delay
T4	Center-off delay
Key O: OFF (circuit open) I: ON (circuit closed) : No power	

Logic of Non-return for U-U Application

Transfer Logic
T2 will reset if N becomes available or A becomes unavailable

Retransfer Logic

T2 will reset if N becomes unavailable

Transfer Process of Non-return for U-G Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	Load status
T7	Genset start delay
T2	Transfer delay
T8	Loadshed delay
T4	Center-off delay
T9	
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	
: No power	

Logic of Non-return for U-G Application

Transfer Logic

- T2 will reset if N becomes available or A becomes unavailable
- If disable Genset Start Fail Warning, T10 will not be counted

T2 will reset if N becomes unavailable

Voluntary Transfer Mode

The voluntary transfer mode is equivalent to auto-priority mode on one source, with forced priority to the SI or SII source. It is activated when associated input is closed (The commercial reference number for the voluntary remote control module is TPCDIO08). It takes over 200 ms to active the voluntary mode. The signal for voluntary transfer should be constant.

Voluntary transfer is normally used for special tariffs. Once the mode is set from voluntary to N or A , ATSE is still remains in auto mode. When there is power contingency on target source, transfer switch can re-transfer to available source automatically.

NOTE: Auto transfer will not be active, if transfer action damages driving system (for example, both sources are out of range, TSE refuses to transfer).
The following are the voluntary transfer mode use cases:

Use Case 1: Typhon Mode

During typhoon or earthquake, the Genset will be more stable than utility. The user for this case has installed a typhoon mode switch on his control panel. The user will activate the typhoon mode switch. It is connected to the input voluntary transfer mode which will transfer to alternate source (need accessory to have function of voluntary transfer using TPCDIO08 accessories). The ATSE will now activate the Genset output and will transfer to Genset once ready.

Now during the typhoon, the Genset is flooded. The ATSE will still be in auto mode. It detects alternate source failure. If the normal source is fine, it will try to transfer to normal source (voluntary is still an auto mode, and we have autoreturn). If the normal source is not available then ATSE will not do any transfer.

Still during typhoon, the Genset can restart (it was a fuel level problem). As the typhoon mode switch is still enabled, the ATSE will transfer back to the Genset. The Genset output keeps activate.

So, whatever the source is connected, the typhoon is gone. The utility is back to normal. The user will deactivate the typhoon mode switch. The ATSE will be transfer back to normal source at auto mode with auto-return, U-G.

The configuration needed is a ATSE along with voluntary transfer module. With this configuration, the user don't need to play with any ATSE settings (return mode, priority source, what is the normal source).

Use Case 2: Peak Tariff (Align with Controller UA/BA)

Initially this feature was created in UA BA in France for Special Tariff Fare (STF) capability. Special Tariff Fare (STF) in France is a special electricity pricing that allows to have discount price on low consumption hours, with the drawback of having a very expensive kWh price on peak hours. With this option, EDF (French utility) provides an output on the energy meter to warn the end user about the price increase. This output is wired on the voluntary transfer input of the controller, which automatically transfers the load to a cheaper alternate source. This allows to help shedding the peaks on the network

Transfer Logic of Voluntary to A (U-U Application)

T11 is internal fixed time delay

Transfer Logic of Voluntary to N (U-U Application)

T11 is internal fixed time delay

Transfer Logic of Voluntary to A (U-G Application)

T11 is internal fixed time delay

Transfer Logic of Voluntary to N (U-G Application)

T11 is internal fixed time delay

Test Mode

The test mode is a procedure to simulate the transfer process with following purpose:

- Test normal transfer actions for ATSE-On load test.
- Test Genset-Off load test
- Test Genset-Transfer functions-On load test

Ways Test

There are two ways to conduct the test:

- Through Active Automatic HMI.
- Through DI using TPCDIO07 accessories.
- No priority difference between HMI command or DI command. ATSE will act upon receiving the command given.

Default Time for Test

- Default as unlimited test (No time duration, has to stop the test manually).
- If select limited test, the default time duration is 30 s .

Time Range for Test

- 1s-1800 s with steps of 1 s .
- Time delay can be bypassed by pressing ESC key in Active Automatic HMI.

Pre-Condition to Start Test Mode

The following conditions are mandatory for the test:

- ATSE is in auto mode.
- ATSE is in normal position while in U to U Application
- ATSE is in alternate position while in U to U Application.
- ATSE is in normal position while in U to G Application.
- For U-U application, A source shall be available before test. Otherwise, there will be an alarm.
NOTE: On load test will not be active, if transfer action damage driving system (for example, both sources are out of range, TSE refuses to transfer).

Off Load Test

- The purpose of this function is to check the Genset can start, without power interruption.

NOTE:

- This test does not check if the switch is able to make the transfer.
- The test is only available with U-G configuration.
- The offload test should not be proposed, when the ATSE doesn't have Genset output feature.
- This function will only be accessible for product with HMI, as the Test mode default value is On load.
- The orders from higher priority will interrupt the test procedure.

On Load Test

- The purpose of this function is to execute ATSE transfer (when the source is still valid) to make sure the system is still able to execute the transfer. The UU and U-G configuration are both available.
- When the ATSE receive the testing start request:
- The ATSE shall initiate the transfer to the Alternate source if the Alternate source is in range, and according to the transfer delays (T7, T2 ...).
- The ATSE shall log a test start event.
- Two conditions to return to N source:
- When the ATSE receive the stop request from user.
- When the Test timer is activated, and the test timer is completed.

Logic of On Load Test U-U

Logic of On Load Test U-G

Limited Test

Return or Start from Auto Mode at Off Position

When switch is at OFF position, this state is interim, and it happens under two conditions:

- Enter the auto mode from other modes or from power on.
- End of off delay (T4), ATSE is unable to switch to N or A , due to both power source loss (with 24 V).
The load shedding will be activated from OFF to A source in both U-U and U-G configuration.

T12 is internal fixed time delay.

A CAUTION
HAZARD OF EQUIPMENT DAMAGE
Enable the local control through Active Automatic HMI to exit the auto mode.
Failure to follow these instructions can result in injury or equipment
damage.

NOTICE

POTENTIAL POWER OUTAGE OF EQUIPMENT

To re-enter Auto mode, disable local control through Active Automatic HMI or External HMI.

Failure to follow these instructions can result in equipment damage.

The local mode is activated through the HMI (only available for Active Automatic HMI). It allows locally to change the logical position of the TSE. The switch will refuse to active if the action will damage the driving system. It cannot transfer to unavailable source.

NOTE: Local transfer will not be active, if transfer action damage driving system (for example, both sources are out of range, TSE refuses to transfer) or both sources are out of operating voltage of solenoid.
Auto Genset start signal and load shedding signal is not available for this mode. In this case, the target source conformity is verified before transfer and time delays are not considered.

Local Control to N

The command is sent through HMI. There is no time delay except OFF delay.
The switch will transfer to normal after receiving the order to it when normal power is in tolerance.

Local Control to A

The command is sent through HMI. There is no time delay except OFF delay.
The switch will transfer to alternate after receiving the order to it when alternate power is in tolerance.

Local Control to O

The command is send through HMI. There shall be no time delay. The switch will transfer to OFF after receiving the order to it.

Transfer Inhibit

When the transfer inhibition input is active, the controller can not send any order to TSE. Front face selection buttons are locked and the HMI only display transfer inhibit.

Fire, Force to OFF and Handle mode still works as before. When exit Fire, Force to OFF and Handle mode, transferring blocked by transfer inhibit.

Use this mode only when inhibit signal (from DI) is active and no higher operation mode is running. When ATS transfer is ongoing, wait until transfer completed.

Exit this mode after inhibit signal is inactive.
Accessories are required using TPCDIO07 to extend this function of the TSE.

Application

- Transfer inhibit occurs when there is power interruption because of short circuit.
- This function can be used to lock the controller by customized signals.
- This function can be used for cooperation with different ATSE.

Fire Protection Mode

- An emergency stop order to transfer ATSE to off position. All the other transfer mode will be canceled except force to OFF and handle control. There shall be no time delay.
- Exit fire protection after signal disappeared.
- Require accessories TPCDIO10 or TPCDIO11 or TPCDIO13 or TPCDIO14 to extend this function.

Application

- The fire protection signal can transfer ATSE to off position when there is fire emergency and protect power continuity for critical loads.

Force to Off

- Transfer ATSE to OFF position with an emergency stop order. All the other transfer mode will be canceled except handle control. There should be no time delay.
- Exit Force after signal disappeared.
- Accessories are required using TPCDIO07 to extend this function of TSE.
- The handle or manual transfer mode is activated from the TSE directly. It deactivates the controller control function except position status (outputs and LEDs), source status LEDs and alarm LED.
- No operation for load shedding and generator, keep the status as before.
- No alarm relay output.

Modbus Communication

What's in This Chapter
Introduction 171
Modbus Master-Slave Principle 172
Modbus Functions 175
Modbus Exception Codes 178
Modbus Registers 179

Introduction

The Modbus communication option enables Schneider Electric low voltage switches to be connected to a supervisor or to any other device with a master Modbus communication channel.

Modbus Master-Slave Principle

Overview

The Modbus protocol exchanges information using a request-reply mechanism between a master (client) and a slave (server). The master-slave principle is a model for a communication protocol in which one device (the master) controls one or more other devices (the slaves). In a standard Modbus network, there is 1 master and up to 31 slaves.

A detailed description of the Modbus protocol is available at www.modbus.org.

Characteristics of the Master-Slave Principle

The master-slave principle is characterized as follows:

- Only 1 master is connected to the network at a time.
- Only the master can initiate communication and send requests to the slaves.
- The master can address each slave individually using its specific address or all slaves simultaneously using address 0 .
- The slaves can only send replies to the master.
- The slaves cannot initiate communication, either to the master or to other slaves.

Master-Slave Communication Modes

The Modbus protocol can exchange information using 2 communication modes:

- unicast mode
- broadcast mode

Unicast Mode

In unicast mode, the master addresses a slave using the specific address of the slave. The slave processes the request then replies to the master.

1 Request
2 Process
3 Reply

Broadcast Mode

The master can also address all slaves using address 0 . This type of exchange is called broadcasting. The slaves do not reply to broadcasting messages.

Response Time

The response time Tr is the time needed by a slave to respond to a request sent by the master:

Values with the Modbus protocol:

- Typical value < 10 ms for 90% of the exchanges
- To normal messages, Tr maximum value is around 700 ms , so it is recommended to implement a 1 second time out after sending a Modbus request.

Data Exchange

The Modbus protocol uses 2 types of data:

- Single bit
- Register (16 bits)

Each register has a register number. Each type of data (bit or register) has a 16-bit address.

The messages exchanged with the Modbus protocol contain the address of the data to be processed.

Registers and Addresses

The address of register number n is $\mathrm{n}-1$. The tables detailed in the following parts of this document provide both register numbers (in decimal format) and corresponding addresses (in hexadecimal format). For example, the address of register number 12000 is 0x2EDF (11999).

Frames

All the frames exchanged with the Modbus RTU protocol have a maximum size of 256 bytes and are composed of 4 fields:

Field	Definition	Size	Description
1	Slave number	1 byte	Destination of the request - 0 : broadcasting (all slaves concerned) - 1-247: unique destination
2	Function codes	Only 1 byte	Refer to Modbus Functions, page 175
3	Data	n registers	Request or reply data
4	Check	2 bytes	CRC16 (to check transmission errors)

Modbus Functions

General Description

The Modbus protocol offers a number of functions that are used to read or write data over the Modbus network. The Modbus protocol also offers diagnostic and network-management functions.

Only the Modbus functions handled by the ATSE are described here.

Read Functions

The following read functions are available:

Function Code	Subfunction Code	Name	Description
$3(0 \times 03)$	-	Read holding registers	Read n output or internal registers
$43(0 \times 2 B)$	$14(0 \times 0 E)$	Read device identification	Read the identification data of the slave
$43(0 \times 2 B)$	$15(0 \times 0 F)$	Get date and time	Read the date and time of the slave

Read Register Example

The following table shows how to read the SI voltage in register 2000. The address of register 2000 is 2000-1=1999 = 0x07CF. The Modbus address of the Modbus slave is $47=0 \times 2 \mathrm{~F}$.

Master Request		Slave Reply	
Field Name	Example	Field Name	Example
Modbus slave address	$0 \times 2 F$	Modbus slave address	$0 \times 2 F$
Function code	0×03	Function code	0×03
Address of the register to read (MSB)	0×07	Data length in bytes	0×02
Address of the register to read (LSB)	$0 \times C F$	Register value (MSB)	0×02
Number of registers (MSB)	0×00	Register value (LSB)	$0 \times 2 B$
Number of registers (LSB)	0×01	CRC (MSB)	$0 \times \mathrm{CRX}$
CRC (MSB)	$0 \times X X$	-	$0 \times X X$
CRC (LSB)	$0 \times X X$		

Get Date and Time Example

The following table shows how to get the date and time of a Modbus slave. The Modbus address of the Modbus slave is $47=0 \times 2 F$.

Master Request		Slave Reply	
Field Name	Example	Field Name	Example
Modbus slave address	$0 \times 2 \mathrm{~F}$	Modbus slave address	$0 \times 2 \mathrm{~F}$
Function code	$0 \times 2 \mathrm{~B}$	Function code	$0 \times 2 \mathrm{~B}$
Subfunction code	$0 \times 0 \mathrm{~F}$	Subfunction code	$0 \times 0 \mathrm{~F}$
Reserved	0×00	Reserved	0×00
-	-	Date and time	Refer to the DATETIME data type

Set Date and Time Example

The following table shows how to set date and time of a Modbus slave. The Modbus address of the Modbus slave is $47=0 \times 2 \mathrm{~F}$, the new date is October 2, 2014, and the new time is 2:32:03:500 p.m.

NOTE: Use the broadcast mode (with Modbus slave address $=0$) to set the date and time of all Modbus slaves.

Master Request	Slave Reply		
Field Name	Example	Field Name	Example
Modbus slave address	$0 \times 2 F$	Modbus slave address	$0 \times 2 \mathrm{~F}$
Function code	$0 \times 2 \mathrm{~B}$	Function code	$0 \times 2 \mathrm{~B}$
Subfunction code	0×10	Subfunction code	0×10
Reserved 1	0×00	Reserved1	Not used
Not used	0×00	Year $=2014$	0×00
Year $=2014$	$0 \times 0 \mathrm{E}$	Month $=$ October	$0 \times 0 \mathrm{E}$
Month $=$ October	$0 \times 0 \mathrm{~A}$	Day Of Month $=2$	$0 \times 0 \mathrm{~A}$
Day Of Month $=2$	0×02	Hour $=14$	0×02
Hour $=14$	$0 \times 0 \mathrm{E}$	Minutes $=32$	$0 \times 0 \mathrm{E}$
Minutes $=32$	0×20	3 sec. 502 ms	0×20
3 sec. 500 ms	$0 \times 0 \mathrm{DAC}$		$0 \times 0 \mathrm{DAE}$

The normal response is an echo of the request, returned after the date-time has been updated in the remote device. If the date-time structure content is not consistent with a true date-time (that is, an invalid date-time), the value returned in the Date-Time field is set to 0 by the device.
In case of 24 Vdc power loss, the date and time of the Modbus slaves without battery is not refreshed anymore. It is therefore mandatory to set date and time for all Modbus slaves after recovering the 24 Vdc power supply.
Furthermore, due to the clock drift of each Modbus slave, it is mandatory to set date and time for all Modbus slaves periodically. Recommended period is at least every 15 minutes.

Scattered Holding Register Read Function

The scattered holding register read function is available:

Function	Subfunction Code	Name	Description
$100(0 \times 64)$	$4(0 \times 04)$	Read scattered holding register	Read n non-contiguous registers

The scattered holding register read function enables the user to:

- avoid reading a large block of contiguous registers when only few registers are needed
- avoid multiple use of functions 3 and 4 in order to read non-contiguous registers

Read Scattered Holding Register Example

The following table shows how to read the addresses of the register 1022 (address 0x03FD) and register 1100 (address 0x044B) of a Modbus slave. The Modbus address of the Modbus slave is $47=0 \times 2 F$.

Master Request		Slave Reply	
Field Name	Example	Field Name	Example
Modbus slave address	0x2F	Modbus slave address	0x2F
Function code	0x64	Function code	0x64
Data length in bytes	0x06	Data length in bytes	0x06
Subfunction code	0x04	Subfunction code	0x04
Transmission number ${ }^{(1)}$	0xXX	Transmission number ${ }^{(1)}$	0 xXX
Address of first register to read (MSB)	0×03	Value of the first register read (MSB)	0×12
Address of first register to read (LSB)	0xFD	Value of the first register read (LSB)	0x0A
Address of second register to read (MSB)	0x04	Value of the second register read (MSB)	0x74
Address of second register to read (LSB)	0x4B	Value of the second register read (LSB)	0x0C
CRC (MSB)	0xXX	CRC (MSB)	0xXX
CRC (LSB)	$0 x X X$	CRC (LSB)	$0 x \mathrm{XX}$
(1) The master gives the transmission number in the request. The slave returns the same number in the reply.			

Write Functions

The following write functions are available:

Function Code	Subfunction Code	Name	Description
$6(0 \times 06)$	-	Preset single register	Write 1 register
$16(0 \times 10)$	-	Preset multiple registers	Write n registers
$43(0 \times 2 \mathrm{~B})$	$16(0 \times 10)$	Set date and time	Write the date and time of the slave

Modbus Exception Codes

Exception Responses

Exception responses from either the master (client) or a slave (server) can result from data processing errors. One of the following events can occur after a request from the master (client):

- If the slave (server) receives the request from the master (client) without a communication error and can handle the request correctly, it returns a normal response.
- If the slave (server) does not receive the request from the master (client) due to a communication error, it does not return a response. The master program eventually processes a timeout condition for the request.
- If the slave (server) receives the request from the master (client) but detects a communication error, it does not return a response. The master program eventually processes a timeout condition for the request.
- If the slave (server) receives the request from the master (client) without a communication error, but cannot handle it (for example, the request is to read a register that does not exist), the slave returns an exception response to inform the master of the nature of the error.

Exception Frame

The slave sends an exception frame to the master to report an exception response. An exception frame is composed of 4 fields:

Field	Definition	Size	Description
1	Slave number	1 byte	Destination of the request $\bullet \quad 1-247: ~ u n i q u e ~ d e s t i n a t i o n ~$
2	Exception function code	1 byte	Request function code +128 (0x80)
3	Exception code	n bytes	See next paragraph
4	Check	2 bytes	CRC16 (to check transmission errors)

Exception Codes

The exception response frame has two fields that differentiate it from a normal response frame:

- The exception function code of the exception response is equal to the function code of the original request plus 128 (0x80).
- The exception code depends on the communication error that the slave encounters.
The following table describes the exception codes handled by the ATSE:

Exception Code	Name	Description
$01(0 \times 01)$	Illegal function	The function code received in the request is not an authorized action for the slave. The slave may be in the wrong state to process a specific request.
$02(0 \times 02)$	Illegal data address	The data address received by the slave is not an authorized address for the slave.
$03(0 \times 03)$	Illegal data value	The value in the request data field is not an authorized value for the slave.
$04(0 \times 04)$	Slave device failure	The slave fails to perform a requested action because of an unrecoverable error.

Modbus Registers

The main information needed for remote supervision of a TransferPact Switching Equipment is contained in the table of common registers starting at register 1001.

One Modbus read request is limited to 125 registers maximum. Three Modbus read requests are necessary to read the entire table.

Use of these common registers is highly recommended to optimize response times and simplify the use of data.

Table Format

Register tables have the following columns:

Address	Register	Pole num- ber	RW	Unit	Type	Ran- ge	TA	Bit	Description

- Address: a 16-bit register address in hexadecimal. The address is the data used in the Modbus frame.
- Register: a 16-bit register number in decimal (register = address + 1).
- Pole number: number of poles that are applicable for that register.
- RW: register read-write status
- R : the register can be read by using Modbus functions
- W: the register can be written by using Modbus functions
- RW: the register can be read and written by using Modbus functions
- RC: the register can be read by using the command interface
- WC: the register can be written by using the command interface
- Unit: the unit the information is expressed in.
- Type: the encoding data type (see data type description below).
- Range: the permitted values for this variable, usually a subset of what the format allows.
- TA: type of TransferPact switch for which the register is available.
- Bit: bit position applicable for that register.
- Description: provides information about the register and restrictions that apply.

TransferPact Switching Equipment Register

Address	Register	Pole number	RW	Unit	Type	Range	TA	Bit	Description
0x03E8	1001	ALL	R	-	BOOL	-	TA	0	Switch N position - $0=$ Open - 1 = Close
0x03E8	1001	ALL	R	-	BOOL	-	TA	1	Switch A position $\begin{array}{ll} \text { - } & 0=\text { Open } \\ \text { - } & 1=\text { Close } \end{array}$
0x03E8	1001	ALL	R	-	BOOL	-	TA	2	Switch OFF position $\begin{array}{ll} \text { - } & 0=\text { Open } \\ \text { - } & 1=\text { Close } \end{array}$
0x03E8	1001	ALL	R	-	ENUM	-	TA	-	Switch position - $1=\mathrm{N}$ position open/close - 2 = A position open/close

Address	Register	Pole number	RW	Unit	Type	Ran- ge	TA	Bit	Description
									- 4 = OFF position open/close
0x03EA	1003	ALL	R	-	ENUM	-	TA	-	Normal Source State - $0=$ Source in range - 1 = Source out of range - 2 = No voltage
0x03EC	1005	ALL	R	-	ENUM	-	TA	-	Alternate source State - $0=$ Source in range - 1 = Source out of range - 2 = No voltage
0x03ED	1006	4 P	R	-	BOOL	-	TA	0	SI phase sequence error validity - $0=$ Invalid - 1 = Valid
0x03ED	1006	4 P	R	-	BOOL	-	TA	1	SI neutral position wrong validity - $0=$ Invalid - 1 = Valid
0x03ED	1006	3P/4P	R	-	BOOL	-	TA	2	SI unbalance voltage validity - $0=$ Invalid - 1 = Valid
0x03ED	1006	4P	R	-	BOOL	-	TA	3	SI neutral loss alarm validity $\text { - } 0=\text { Invalid }$ - 1 = Valid
0x03ED	1006	ALL	R	-	BOOL	-	TA	4	SI over voltage state validity - $0=$ Invalid - 1 = Valid
0x03ED	1006	ALL	R	-	BOOL	-	TA	5	SI under voltage state validity - $0=$ Invalid - 1 = Valid
0x03ED	1006	ALL	R	-	BOOL	-	TA	6	SI over frequency state validity $\text { - } 0=\text { Invalid }$ $\text { - } 1 \text { = Valid }$
0x03ED	1006	ALL	R	-	BOOL	-	TA	7	SI under frequency state validity - $0=$ Invalid - 1 = Valid
0x03EE	1007	4P	R	-	BOOL	-	TA	0	SI phase sequence error - $1=\mathrm{Yes}$
0x03EE	1007	4P	R	-	BOOL	-	TA	1	SI neutral position wrong - $1=\mathrm{Yes}$
0x03EE	1007	3P/4P	R	-	BOOL	-	TA	2	SI unbalance voltage status - $1=\mathrm{Yes}$
0x03EE	1007	4P	R	-	BOOL	-	TA	3	SI neutral loss alarm - $1=\mathrm{Yes}$
0x03EE	1007	ALL	R	-	BOOL	-	TA	4	SI over voltage state - $1=\mathrm{Yes}$
0x03EE	1007	ALL	R	-	BOOL	-	TA	5	SI under voltage state - 1 = Yes
0x03EE	1007	ALL	R	-	BOOL	-	TA	6	SI over frequency state - $1=\mathrm{Yes}$
0x03EE	1007	ALL	R	-	BOOL	-	TA	7	SI under frequency state - 1 = Yes
0x03EF	1008	4P	R	-	BOOL	-	TA	0	SII phase sequence error validity - $0=$ Invalid

Address	Register	Pole number	RW	Unit	Type	Range	TA	Bit	Description
									- 1 = Valid
0x03EF	1008	4P	R	-	BOOL	-	TA	1	SII neutral position wrong validity - $0=$ Invalid - 1 = Valid
0x03EF	1008	3P/4P	R	-	BOOL	-	TA	2	SII unbalance voltage validity - $0=$ Invalid - 1 = Valid
0x03EF	1008	4P	R	-	BOOL	-	TA	3	SII neutral loss alarm validity - $0=$ Invalid - 1 = Valid
0x03EF	1008	ALL	R	-	BOOL	-	TA	4	SII over voltage state validity - $0=$ Invalid - 1 = Valid
0x03EF	1008	ALL	R	-	BOOL	-	TA	5	SII under voltage state validity - $0=$ Invalid - 1 = Valid
0x03EF	1008	ALL	R	-	BOOL	-	TA	6	SII over frequency state validity - 1 = Yes
0x03EF	1008	ALL	R	-	BOOL	-	TA	7	SII under frequency state validity - 1 = Yes
0x03F0	1009	4P	R	-	BOOL	-	TA	0	SIl phase sequence error - 1 = Yes
0x03F0	1009	4P	R	-	BOOL	-	TA	1	SII neutral position wrong - 1 = Yes
0x03F0	1009	3P/4P	R	-	BOOL	-	TA	2	SII unbalance voltage status - 1 = Yes
0x03F0	1009	4P	R	-	BOOL	-	TA	3	SII neutral loss alarm - 1 = Yes
0x03F0	1009	ALL	R	-	BOOL	-	TA	4	SII over voltage state - 1 = Yes
0x03F0	1009	ALL	R	-	BOOL	-	TA	5	SII under voltage state - 1 = Yes
0x03F0	1009	ALL	R	-	BOOL	-	TA	6	SII over frequency state - 1 = Yes
0x03F0	1009	ALL	R	-	BOOL	-	TA	7	SII under frequency state - $1=\mathrm{Yes}$
0x03FC	1021	ALL	R	-	ENUM	-	TA	-	Load shedding function supported - 1 = Supported
0x03FD	1022	ALL	R	-	ENUM	-	TA	-	Load shedding status - $0=$ Inactive - 1 = Active
0x03FE	1023	ALL	R	-	ENUM	-	TA	-	Genset control status supported - 1 = Supported
0x03FF	1024	ALL	R	-	ENUM	-	TA	-	Genset control status - $0=$ Inactive - 1 = Active - 2 = Unable to control
0x044B	1100	ALL	R	-	ENUM	-	TA	-	Runtime mode - $0=$ Init - 1 = Auto - 2 = Test

Address	Register	Pole num- ber	RW	Unit	Type	Ran- ge	TA	Bit	Description

Address	Register	Pole number	RW	Unit	Type	$\begin{aligned} & \text { Ran- } \\ & \text { ge } \end{aligned}$	TA	Bit	Description			
									Product series	Pole number	Rated voltage	Rated voltage range in HMI
									$\begin{aligned} & \text { Frame 100: } \\ & 32-100 \mathrm{~A} \end{aligned}$	2P	220 V	$\begin{aligned} & 220 \mathrm{~V} / \\ & 230 \mathrm{~V} / \\ & 240 \mathrm{VI} \\ & 250 \mathrm{~V} \end{aligned}$
									$\begin{aligned} & \text { Frame 160: } \\ & 80-160 \mathrm{~A} \end{aligned}$	3P/4P	$\begin{aligned} & 380 \mathrm{VI} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \mathrm{VI} \\ & 400 \mathrm{VI} \\ & 415 \mathrm{~V} / \\ & 440 \mathrm{~V} \end{aligned}$
0x0bBB	3004	ALL	R/W	Hz	FLOAT32	-	TA	-	Source rated frequency - 50 or 60			
0x0bBD	3006	ALL	R	-	ENUM	-	TA	-	Source neutral position - $0=$ End of phase sequence - 1 = Start of phase sequence			
0x0BC1	3010	ALL	R/W	-	ENUM	-	TA	-	Enable abnormal frequency transfer - 0 = Disable - 1 = Enable			
0x0BC2	3011	ALL	R/W	-	FLOAT32	-	TA	-	SI Under Frequency Start/Drop-out threshold percent - $0.80 \sim 0.95$ - $80 \% \sim 95 \%$			
0x0BC4	3013	ALL	R/W	-	FLOAT32	-	TA	-	SI Under Frequency Reset/Pick-up threshold percent - Max[0.85, dropout + Fgap] ~ 1 - Max[85%, dropout + Fgap] ~ 100%			
0x0BC6	3015	ALL	R/W	-	FLOAT32	-	TA	-	SII Under Frequency Start/Drop-out threshold percent - $0.80 \sim 0.95$ - $80 \% \sim 95 \%$			
0x0BC8	3017	ALL	R/W	-	FLOAT32	-	TA	-	SII Under Frequency Reset/pick-up threshold percent - Max[0.85, dropout + Fgap] ~ 1 - Max[85%, dropout + Fgap] ~ 100%			
0x0BCA	3019	ALL	R/W	-	FLOAT32	-	TA	-	SI Over Frequency Start/Drop-out threshold percent - $1.05 \sim 1.2$ - $105 \% \sim 120 \%$			
0x0BCC	3021	ALL	R/W	-	FLOAT32	-	TA	-	SI Over Frequency Reset/Pick-up threshold percent - $1 \sim \min [1.15$, dropout-Fgap] - $100 \% \sim \min [115 \%$, dropout - Fgap]			
0x0bCE	3023	ALL	R/W	-	FLOAT32	-	TA	-	SII Over Frequency Start/Drop-out threshold percent - $1.05 \sim 1.2$ - $105 \% \sim 120 \%$			
0x0BDO	3025	ALL	R/W	-	FLOAT32	-	TA	-	SII Over Frequency Reset/pick-up threshold percent - $1 \sim \min [1.15$, dropout-Fgap] - $100 \% \sim \min [115 \%$, dropout - Fgap]			
0x0BD3	3028	ALL	R/W	-	FLOAT32	-	TA	-	SI Under voltage Start/Drop-out threshold percent - $0.70 \sim 0.95$ - $70 \% \sim 95 \%$			

Address	Register	Pole number	RW	Unit	Type	Range	TA	Bit	Description
0x0BD5	3030	ALL	R/W	-	FLOAT32	-	TA	-	SI Under voltage Reset/Pick-up threshold percent - $\operatorname{Max}[0.85$, dropout+Vgap] ~ 1 - Max[85%, dropout + Vgap] $\sim 100 \%$
0x0BD7	3032	ALL	R/W	-	FLOAT32	-	TA	-	SII Under voltage Start/Drop-out threshold percent - $0.70 \sim 0.95$ - $70 \% \sim 95 \%$
0x0BD9	3034	ALL	R/W	-	FLOAT32	-	TA	-	SII Under voltage Reset/pick-up threshold percent - $\operatorname{Max}[0.85$, dropout+Vgap] ~ 1 - Max[85%, dropout + Vgap] $\sim 100 \%$
0x0BDB	3036	ALL	R/W	-	ENUM	-	TA	-	Enable over voltage transfer - 0 = Disable - 1 = Enable
0x0BDC	3037	ALL	R/W	-	FLOAT32	-	TA	-	SI Over voltage Start/Drop-out threshold percent - $1.05 \sim 1.35$ - $105 \% \sim 135 \%$
OxOBDE	3039	ALL	R/W	-	FLOAT32	-	TA	-	SIOver voltage Reset/Pick-up threshold percent - $1 \sim \min [1.15$, dropout - Vgap] - $100 \% \sim \min [115 \%$, dropout - Vgap]
0x0BEO	3041	ALL	R/W	-	FLOAT32	-	TA	-	SII Over voltage Start/Drop-out threshold percent - $1.05 \sim 1.35$ - $105 \% \sim 135 \%$
0x0BE2	3043	ALL	R/W	-	FLOAT32	-	TA	-	SII Over voltage Reset/Pick-up threshold percent - $1 \sim \min [1.15$, dropout - Vgap] - $100 \% \sim \min [115 \%$, dropout - Vgap]
0x0BE4	3045	3P/4P	R/W	-	ENUM	-	TA	-	Enable voltage unbalance - $0=$ Disable - 1 = Enable
0x0BE5	3046	3P/4P	R/W	-	FLOAT32	-	TA	-	SI unbalance threshold - $0.02 \sim 0.30$ - $2 \% \sim 30 \%$
0x0BE7	3048	3P/4P	R/W	-	FLOAT32	-	TA	-	SII unbalance threshold - $0.02 \sim 0.30$ - $2 \% \sim 30 \%$
0x0BE9	3050	4P	R/W	-	ENUM	-	TA	-	Enable phase sequence warning - $0=$ Disable - 1 = Enable
0x0BEA	3051	4P	R	-	ENUM	-	TA	-	Source phase sequence - $0=1-2-3$ (ro)
0x0BEF	3056	ALL	R/W	-	ENUM	-	TA	-	Source priority - 1 = Source I is N and Source II is A - 2 = Source I is A and Source II is N
0x0BFO	3057	ALL	R/W	-	ENUM	-	TA	-	Source usage - $1=\mathrm{U}-\mathrm{U}$ - $2=\mathrm{U}-\mathrm{G}$
0x0BF1	3058	ALL	R/W	-	ENUM	-	TA	-	Auto Transfer mode - $0=$ auto return - 1 = non-return

Address	Register	Pole number	RW	Unit	Type	$\begin{aligned} & \text { Ran- } \\ & \text { ge } \end{aligned}$	TA	Bit	Description
									- 2 = manual return
0x0BF2	3059	ALL	R/W	s	FLOAT32	-	TA	-	N to A confirmation transfer delay T2 - $0 \sim 1800$
0x0BF4	3061	ALL	R/W	s	FLOAT32	-	TA	-	A to N confirmation transfer delay T6 - 0~3600
0x0BF6	3063	ALL	R/W	s	FLOAT32	-	TA	-	Center-Off time delay T4 $\text { - } 0 \sim 30$
0x0BF8	3065	ALL	R/W	s	FLOAT32	-	TA	-	Generator Start Delay T7 $\text { - } \quad 0 \sim 120$
0x0BFA	3067	ALL	R/W	s	FLOAT32	-	TA	-	Generator Stop Delay T9 - $0 \sim 3600$
0x0BFC	3069	ALL	R/W	-	ENUM	-	TA	-	Enable genset start fail warning - $0=$ Disable - 1 = Enable
0x0BFD	3070	4P	R/W	-	ENUM	-	TA	-	Enable neutral position wrong warning - $0=$ Disable - 1 = Enable
0x0bFE	3071	4P	R/W	-	ENUM	-	TA	-	Enable neutral loss warning - $0=$ Disable
0x0BFF	3072	ALL	R/W	-	ENUM	-	TA	-	Onload test timer T13 limited - $0=$ Unlimited - 1 = Limited
0x0C00	3073	ALL	R/W	s	FLOAT32	-	TA	-	Onload test timer T13 time period - $1 \sim 1800$
0x0C02	3075	ALL	R/W	-	ENUM	-	TA	-	Offload test timer T14 limited - $0=$ Unlimited - 1 = Limited
0x0C03	3076	ALL	R/W	s	FLOAT32	-	TA	-	Offload test timer T14 time period - $1 \sim 1800$
0x0C05	3078	ALL	R/W	-	ENUM	-	TA	-	Test type from DI Test module config - $0=$ Onload test - 1 = Offload test
0x0C1B	3100	ALL	R	Hz	FLOAT32	-	TA	-	SI Under Frequency Start/Drop-out threshold value - Rated freq * percent
0x0C1D	3102	ALL	R	Hz	FLOAT32	-	TA	-	SI Under Frequency Reset/Pick-up threshold value - Rated freq * percent
0x0C1F	3104	ALL	R	Hz	FLOAT32	-	TA	-	SII Under Frequency Start/Drop-out threshold value - Rated freq * percent
0x0C21	3106	ALL	R	Hz	FLOAT32	-	TA	-	SII Under Frequency Reset/Pick-up threshold value - Rated freq * percent
0x0C23	3108	ALL	R	Hz	FLOAT32	-	TA	-	SI Over Frequency Start/Drop-out threshold value - Rated freq * percent
0x0C25	3110	ALL	R	Hz	FLOAT32	-	TA	-	SI Over Frequency Reset/Pick-up threshold value - Rated freq * percent
0x0C27	3112	ALL	R	Hz	FLOAT32	-	TA	-	SII Over Frequency Start/Drop-out threshold value

Address	Register	Pole number	RW	Unit	Type	$\begin{aligned} & \text { Ran- } \\ & \text { ge } \end{aligned}$	TA	Bit	Description
									- Rated freq * percent
0x0C29	3114	ALL	R	Hz	FLOAT32	-	TA	-	SII Over Frequency Reset/Pick-up threshold value - Rated freq * percent
0x0C2B	3116	ALL	R	V	FLOAT32	-	TA	-	SI Under voltage Start/Drop-out threshold value - Rated freq * percent
0x0C2D	3118	ALL	R	v	FLOAT32	-	TA	-	SI Under voltage Reset/Pick-up threshold value - Rated freq * percent
0x0C2F	3120	ALL	R	v	FLOAT32	-	TA	-	SII Under voltage Start/Drop-out threshold value - Rated freq * percent
0x0C31	3122	ALL	R	v	FLOAT32	-	TA	-	SII Under voltage Reset/pick-up threshold value - Rated freq * percent
0x0C33	3124	ALL	R	v	FLOAT32	-	TA	-	SI Over voltage Start/Drop-out threshold value - Rated freq * percent
0x0C35	3126	ALL	R	v	FLOAT32	-	TA	-	SIOver voltage Reset/Pick-up threshold value - Rated freq * percent
0x0C37	3128	ALL	R	V	FLOAT32	-	TA	-	SII Over voltage Start/Drop-out threshold value - Rated freq * percent
0x0C39	3130	ALL	R	v	FLOAT32	-	TA	-	SII Over voltage Reset/Pick-up threshold value - Rated freq * percent
0x0DAB	3500	ALL	R	-	BOOL	-	TA	0	Genset start failure alarm validity - $0=$ Invalid - 1 = valid
0x0DAC	3501	ALL	R	-	BOOL	-	TA	0	Genset start failure alarm - 1 = Yes
0xODAD	3502	ALL	R	-	BOOL	-	TA	0	External power supply presence validity - $0=$ Invalid - $1=$ valid
0xODAE	3503	ALL	R	-	BOOL	-	TA	0	External power supply presence - 1 = Presence
0x0DAF	3504	ALL	R	-	BOOL	-	TA	0	Onload test failure alarm validity - $0=$ Invalid - 1 = valid
0x0DAF	3504	ALL	R	-	BOOL	-	TA	1	Offload test failure alarm validity - $0=$ Invalid - 1 = valid
0x0DB0	3505	ALL	R	-	BOOL	-	TA	0	Onload test failure alarm - 1 = Yes
0x0DB0	3505	ALL	R	-	BOOL	-	TA	1	Offload test failure alarm - $1=\mathrm{Yes}$
0x0DB1	3506	ALL	R	-	ENUM	-	TA	-	Unexpected position alarm - $0=$ No alarm - 1 = When transferring to A position - $2=$ When transferring to N position - $3=$ When transferring to off position

Address	Register	Pole number	RW	Unit	Type	Range	TA	Bit	Description
									- $4=$ When transferring to invalid position - $5=$ When in non-handle mode
0x0FBD	4030	ALL	R	-	INT32U	-	TA	-	Total Transfer count (no handle count) - $0 \sim 65535$
0x0FBF	4032	ALL	R	-	INT32U	-	TA	-	Total Transfer failure count - $0 \sim 65535$
0x0FC1	4034	ALL	R	-	INT32U	-	TA	-	Too fast transfer counter - $0 \sim 65535$
0x0FD1	4050	ALL	R	-	INT32U	-	TA	-	Configuration changed count - $0 \sim 65535$
0x01389	5002	ALL	R	-	ENUM	-	TA	-	Force to off function supported - 1 = Supported
0x0138A	5003	ALL	R	-	ENUM	-	TA	-	Force to off status - $0=$ Inactive - 1 = Active
0x0138B	5004	ALL	R	-	ENUM	-	TA	-	Inhibit function supported - 1 = Supported
0x0138C	5005	ALL	R	-	ENUM	-	TA	-	Inhibit status - $0=$ Inactive - 1 = Active
0x0138D	5006	ALL	R	-	ENUM	-	TA	-	Voluntary remote control function supported - 1 = Supported
0x0138E	5007	ALL	R	-	ENUM	-	TA	-	Voluntary remote control status - $0=$ Deactice - $1=$ to_N - 2 = to_A
0x0138F	5008	ALL	R	-	ENUM	-	TA	-	Fire function supported - 1 = Supported
0x01390	5009	ALL	R	-	ENUM	-	TA	-	Fire status - $0=$ Inactive - 1 = Active
0x01391	5010	ALL	R	-	ENUM	-	TA	-	test status function supported - 1 = Supported
0x01392	5011	ALL	R	-	ENUM	-	TA	-	test status - $0=$ Inactive - 1 = Active
0x01393	5012	ALL	R	-	ENUM	-	TA	-	HMI transfer function supported - 1 = Supported
0x01394	5013	ALL	R	-	ENUM	-	TA	-	HMI transfer status (local control) - $0=$ Deactice - 1 = Active
0x0144F	5200	ALL	R/W	-	FLOAT32	-	TA	-	Load shedding time delay T8 - $0 \sim 15$
0x0176F	6000	ALL	R/W	-	DATE- TIME	-	TA	-	System time - datetime IEC870-5-4
0x01773	6004	ALL	R	-	ENUM	-	TA	-	Pole number - $2=2 P$ - $3=3 \mathrm{P}$ - $4=4 \mathrm{P}$
0x01783	6020	ALL	R	-	INT16U	-	TA	-	Product Identifier

Address	Register	Pole num- ber	RW	Unit	Type	Ran- ge	TA	Bit	Description
									19750
0x01784	6021	ALL	R	-	STRING	-	TA	-	Vendor Name Schneider Electric
0x0178E	6031	ALL	R	-	STRING	-	TA	-	Product Family TransferPacT
0x01797	6040	ALL	R	-	STRING	-	TA	-	Product Range TransferPacT Remote
0x017A1	6050	ALL	R	-	STRING	-	TA	-	Product Model TSE- Active Auto
0x017A9	6058	ALL	R	-	STRING	-	TA	-	Product Code CR num
0x017B1	6066	ALL	R	-	STRING	-	TA	-	Serial Number

Address	Register	Pole num- ber	RW	Unit	Type	Ran- ge	TA	Bit	Description
$0 \times 09 \mathrm{C} 43$	40004	ALL	R	-	INT16U	-	TA	-	System log latest index $0-65535$
$0 \times 09 C 44$	40005	ALL	R	-	TI086	-	TA	-	System log content

Alarms and Troubleshooting

What's in This Chapter
Overview 191
Alarm 192
Warning 195
Event Logs 201

Overview

There are two types of alarms for ATSE:

- Alarm
- Warning

Alarm Type	Description
Alarm	Indicates that the transfer function cannot perform the correct function anymore. The acknowledgement shall be done by maintenance team.
Warning	Indicates the occurrence of unsuccessful testing, Genset start or detected failure.

Alarm

When the alarm is triggered, the HMI will pop-up the alarm screen. The alarm LED shall always be ON and the alarm relay will be triggered.

If the alarm triggered, it will ignore all the other alarms (including major and minor) until it is acknowledged. Therefore, check and clear the alarms on priority.

NOTE: A password is required to open the Set \& Operate page.
The Δ icon is displayed on the page to indicate that there is an active alarm.

- The Modbus will provide the other alarms continuously.
- For Automatic HMI, the alarm LED will be ON until the controller is restarted.

Perform the following procedure to check and clear the alarm:

1. Select the Set \& Operate page and press OK.

2. Enter the password to open the Set \& Operate page.
3. Select Operations sub-page.

4. Press Down button and select Alarm Ack.

5. Click OK on the screen.

Alarm Message

Alarm Code	Alarm Message	LCD display
1	Position alarm: transfer to A error	Transfer to A failed
2	Position alarm: transfer to N error	Transfer to N failed
3	Position alarm: transfer to OFF error	Transfer to OFF failed
4	Position alarm: transfer to invalid position	Invalid position
5	Position alarm: Internal error	Internal error
6	Position alarm: unexpected position	Unexpected position
10	Source I phase rotation error	SI phase rotation
11	Source II phase rotation error	SII phase rotation

Position Alarm: Transfer to A Error

- Event code: 1
- Type of event: Alarm.
- Default: Always enable.
- Description: When TSE cannot transfer to replacement, an alarm will be raised.
- Cause: Stack of mechanism or failure of electronic components.
- Diagnosis and repair: Contact field service.

Position Alarm: Transfer to N Error

- Event code: 2.
- Type of event: Alarm.
- Default: Always enable.
- Description: When the TSE cannot transfer to normal, an alarm will be raised.
- Cause: Stack of mechanism or failure of electronic components.
- Diagnosis and repair: Contact field service.

Position Alarm: Transfer to Off Error

- Event code: 3
- Type of event: Alarm.
- Default: Always enable.
- Description: When the TSE cannot transfer to off position, an alarm will be raised.
- Cause: Stack of mechanism or failure of electronic components.
- Diagnosis and repair: Contact field service..

Position Alarm: Transfer to Invalid Position

- Event code: 4.
- Type of event: Alarm.
- Default: Always enable.
- Description: When TSE transfer to frequently, an alarm will be raised.
- Cause: Unexpected operating or controller failure.
- Diagnosis and repair: Contact field service..

Position Alarm: Internal Error

- Event code: 5
- Type of event: Alarm.
- Default: Always enable.
- Description: When TSE cannot transfer to off position, an alarm will be raised.
- Cause: Stack of mechanism or failure of electronic components.
- Diagnosis and repair: Contact field service..

Position Alarm: Unexpected Position

- Event code: 6
- Type of event: Alarm.
- Default: Always enable.
- Description: When micro-switch all closed, the TSE may lead short circuit of two sources. an alarm will be raised.
- Cause: Welding issue of failure of micro-switch.
- Diagnosis and repair: Contact field service..

Source I or II Phase Rotation Failure

- Event code: 10,11.
- Type of event: Alarm.
- Default: Enabled (Disabled in China market)
- Description: When there is phase rotation such as from A-B-C move to C-B-A, an alarm will be raised if this function is enabled.
- Cause: Wrong installing when first connection of main circuit or reform the main connections.
- Diagnosis and repair: Double check the phase sequence of main circuit or contact field service.

Warning

When the warning is triggered for event codes, such as $30,31,40,41,50,51,52$ and 53 , the HMI will pop-up the alarm screen. The green source LED blinks OFF or ON for event codes such as $54,55,70,71,72,73,74,75,76,77,78,79,80$ and 81 . The event code list and display method are shown in the below table.

The \boldsymbol{o} icon is displayed on the page to indicate an active warning.
If the warning is triggered, it will display the latest warning and previous alarms are overwritten on the HMI. The log will be recorded.

Perform the following procedure to check and clear the alarm:

1. Select the Set \& Operate page and press OK.

2. Enter the password to open the Set \& Operate page.
3. Select Operations sub-page.

4. Press Down button and select Warning Ack.

5. Click OK on the screen.

The warning will not inhibit the transfer functions for the below event codes:

List of Event Codes

Alarm code	Alarm message	LCD display method	LED display method
30	Genset invalid	Bottom bar	None
31	Genset start failure	Bottom bar	None
40	On load test failure	Bottom bar	None
41	Off load test failure	Bottom bar	None
50	SI unbalance out of range	Bottom bar	None
51	SII unbalance out of range	Bottom bar	None
52	SI neutral connection wrong	Bottom bar	None
53	SII neutral connection wrong	Bottom bar	None
54	SI neutral loss warning	None	LED source state blinking
55	SII neutral loss warning	None	LED source state blinking
70	SI under voltage	None	LED source state blinking
71	SII under voltage	None	LED source state blinking
72	SI over voltage	None	LED source state blinking
73	SII over voltage	None	LED source state blinking
74	SI no voltage	None	LED source state off
75	SII no voltage	None	LED source state off
76	SI under frequency	None	LED source state blinking
77	SII under frequency	None	LED source state blinking
78	SI over frequency	None	LED source state blinking
79	SII over frequency	None	LED source state blinking
80	SI all recover	None	LED source state on
81	SIl all recover	None	LED source state on

SI Unbalance Warning

- Event code: 50.
- Type of event: Warning.
- Default: Disable.
- Description: If unbalance of voltage occurs over the drop-out rate of threshold (5% as default) when SI is connected, a warning will be raised.
- Cause: Too many single-phase loads or poor quality of power supply environment.
- Diagnosis and repair: Set the different value of imbalance rate or contact field service.

SII Unbalance Warning

- Event code: 51
- Type of event: Warning.
- Default: Disable.
- Description: If unbalance of voltage occurs over the drop-out rate of threshold (5% as default) when SII is connected, a warning will be raised.
- Cause: Too many single-phase loads or poor quality of power supply environment.
- Diagnosis and repair: Set the different value of imbalance rate or contact field service.

Generator Invalid

- Event code: 30.
- Type of event: Warning.
- Default: Always disable.
- Description: The sudden loss of an alternate source will lead to a warning.
- Cause: Genset is not connected well or some failure on Genset started
- Diagnosis and repair: Contact field service.

Generator Start Failure

- Event code: 31.
- Type of event: Warning.
- Default: Disable.
- Description: After sending the Genset start signal, controller will wait a time T10 duration until Genset is ready.
- The ATSE will rise the Genset alarm, if Genset is not started within T10 timer is ended (if enabled).
- The ATSE shall reset the Genset alarm, when the A source is in range or when the N source is in range.
- The time delay is only available when there is external power.
- Cause: Genset is not connected well or some failure on Genset started.
- Diagnosis and repair: Contact field service.

On Load/Off Load Test Failure

- Event code: 40, 41
- Type of event: Warning.
- Default: Always enabled.
- Description: If on load or off load test is failed or interrupted, a warning will be raised.
- Cause: Product failure or external interruption
- Diagnosis and repair: Contact field service.

SI or SII Neutral Position Wrong Warning

- Event code: 52, 53
- Type of event: Warning.
- Default: Always enabled in IEC market, disabled in China market.
- Description: If sequence of neutral is not connected as set value, a warning will be raised.
- Cause: Wrong connection of neutral or wrong settings.
- Diagnosis and repair: Set the new neutral sequence or contact field service.

SI or SII Neutral Loss Warning

- Event code: 54, 55
- Type of event: Warning.
- Default: Disabled.
- Description: If unbalance rate of voltage occurs over 20% when source is connected, a warning will be raised.
- Cause: Miss connection or disconnection caused by interior or exterior impacts of neutral line..
- Diagnosis and repair: correct the connection or contact field service.

SI Under Voltage

- Event code: 70.
- Type of event: Event.
- Default: Always enable.
- Description: When there is under voltage on SI , an event log will be recorded.

SII Under Voltage

- Event code: 71.
- Type of event: Event.
- Default: Always enable.
- Description: When there is under voltage on SII, an event log will be recorded.

SI Over Voltage

- Event code: 72.
- Type of event: Event.
- Default: Disabled.
- Description: When there is over voltage on SI , an event log will be recorded.

SII Over Voltage

- Event code: 73.
- Type of event: Event.
- Default: Disabled.
- Description: When there is over voltage on SII, an event log will be recorded.

SI No Voltage

- Event code: 74.
- Type of event: Event.
- Default: Always enable.
- Description: When there is source failure on SI , an event log will be recorded.

SII No Voltage

- Event code: 75.
- Type of event: Event.
- Default: Always enable.
- Description: When there is source failure on SII, an event log will be recorded.

SI Under Frequency

- Event code: 76.
- Type of event: Event.
- Default: Disable
- Description: When there is Under frequency on SI , an event log will be recorded.

SII Under Frequency

- Event code: 77.
- Type of event: Event.
- Default: Disable
- Description: When there is Under frequency on SII, an event log will be recorded.

SI Over Frequency

- Event code: 78.
- Type of event: Event.
- Default: Disable
- Description: When there is Under frequency on SI , an event log will be recorded.

SII Over Frequency

- Event code: 79.
- Type of event: Event.
- Default: Disable
- Description: When there is Under frequency on SII, an event log will be recorded.

SI All Recover

- Event code: 80.
- Type of event: Event.
- Default: Always enable.
- Description: When SI recover to normal, an event log will be recorded.

SII All Recover

- Event code: 81.
- Type of event: Event.
- Default: Always enable.
- Description: When SII recover to normal, an event log will be recorded.

Event Logs

TransferPacT ATSE can record maximum up to 99 events of the event logs. If it exceeds the events limit, the latest logs will overwrite the previous event logs. The limit of event logs on LCD and Modbus are:

- LCD can only display the last 20 events.
- Modbus can display all the events.

Perform the following procedure to check the event logs:

1. Select the Status page from Home page and press OK button.

2. Select Event Logs option and press OK button.

3. Select SI Back To Normal.

4. Press OK button to check the selected event log.

Event Logs Page Description

Label	Description
1	Time of events. NOTE: Without any time calibration or external DC 24 V, after long terms shut down of controller, the timer may show wrong.
2	The source status during the events.
3	Code of events.
4	Transfer mode during the events.

NOTE: Event logs cannot be reset.

List of Event Logs

Event Code	LCD Display
1	Position alarm: Transfer to A Failed
2	Position alarm: Transfer to A Failed
3	Position alarm: Transfer to OFF Failed
4	Position alarm: Invalid Position
5	Position alarm: Internal Error
6	Position alarm: Unexpected position
10	SI Phase Rotation
11	SII Phase Rotation
50	SI Unbalance out of Range
51	SII Unbalance out of Range
30	Genset Invalid
31	Genset Start Failure
40	On Load Test Failure
41	Off Load Test Failure
52	SI Neutral Connection Wrong
53	SII Neutral Connection Wrong
54	SI Neutral Loss
55	SII Neutral Loss
70	SI Undervoltage
71	SII Undervoltage
72	SI Back To Normal To Normal
73	SI Overvoltage
74	SII Overvoltage
76	SI No Voltage
77	SII No Voltage
78	SII Underfrequency
79	SI Overfrequencency
70	

Dielectric Test

Dielectric Test Switch

NOTICE

HAZARD OF EQUIPMENT DAMAGE

- Before dielectric test, put the dielectric switch to test position to turn off the controller.
- After the dielectric test, put the dielectric switch back to run position to power on the controller.

Failure to follow these instructions can result in equipment damage.

The dielectric switch on the controller is used to disconnect the controller before performing the dielectric test and install accessory. Both functions are needed to disconnect dielectric switch. The arrow position of the switch indicates whether the controller is disconnected (Test) or connected (Run) to perform the dielectric test.

Perform the following procedure for dielectric test:

1. Insert the screwdriver and rotate anti-clockwise to bring it to Test position.

2. Perform the dielectric test once the dielectric switch is ejected.

3. Insert the screwdriver and rotate the dielectric switch clockwise to bring it to Run position after the dielectric test.

Cybersecurity

NOT/CE
HAZARD OF EQUIPMENT DAMAGE
- Keep side label intact.
- Do not touch the product if side label is broken as it may defect the
equipment.
Failure to follow these instructions can result in equipment damage.

For more information on Cybersecurity, refer to Cybersecurity Guide.

Acronyms and Terminology

Short terms	Expansion	Description
TSE	Transfer Switching Equipment	Self-acting transfer switching equipment, including all necessary sensing inputs, monitoring, and control logic for transferring operations.
ATSE	Automatic Transfer Switching Equipment	
RTSE	Remote Transfer Switching Equipment	Remote operated transfer switching equipment
MTSE	Manual Transfer Switching Equipment	Manually operated transfer switching equipment
SI	Source I	SI supply
SII	Source II	SII supply
N	Normal	Normal supply
A	Alternate	Alternate supply
E	Emergency	
0	Off position	Two powers are disconnected
Specific TSE	Specific transfer switching equipment	2/3 position dedicated designed as IEC 60947-6-1 product requirement
Derived TSE	Derived transfer switching equipment	Fulfilling requirements of other IEC 60947 product standards
Open transition	Normal transfer	The basic transfer function
In phase transition	Sync transition	Open transition but detect phase angle when re-transfer
Delayed transition	Delay transition	A programmable time delay for neutral position
Close transition	Close transition	A load transfer by momentarily paralleling both sources
Neutral overlapping	Transfer with neutral overlapping	Making before breaking and N will never be lost
Under voltage sensor		Detect the Undervoltage of power source
Over voltage sensor		Detect the Overvoltage of power source
Frequency sensor		Detect the frequency of power source
Voltage imbalance sensor		Detect the balance of power source
Phase rotation sensor		Detect the phase angle of power source
Loss of single-phase sensor		Detect the phase of power source
T2	Transfer Delay	Transfer delay
T4	Center-off Delay	Center-off delay
T6	Re-Transfer Delay	Re-Transfer Delay
T7	Genset Start Delay	Genset start delay
T8	Loadshed Delay	Loadshed delay
T9	Genset Cool Delay	Genset cool delay
T10	Genset Fail Delay	Genset fail delay
T13	On Load Test Delay	On load test delay
T14	Off Load Test Delay	Off load test delay
Power supply models		An additional power supply connection for controller
Auto-return		A working mode for ATSE controller
Non-return		A working mode for ATSE controller
Manual-return		A working mode for ATSE controller
Load shed		A signal from ATSE controller to shed the load

Short terms	Expansion	Description
Transfer inhibit		Override transfer orders
Genset start		A Genset start signal from controller
Fire protection		Shed the ATSE when fire signal is received
Voluntary remote control		Transfer remotely
External 24 Vdc		External power for controller/communication

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 141297000
www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.
© 2021 - Schneider Electric. All rights reserved.

[^0]: 1. Close the plastic cover.
