Environmental Profile

This LCA is calculated according to：ISO 14044，ISO 14040 and EN 15804

Product：	$3061875-$ PE80 Geothermal Pipe BK $\mathbf{4 0}$ PN6 L＝200
Unit：	1 piece
Manufacturer：	Wavin－SE－Eskilstuna

Ground heating pipes produced in PE80（PEM），and according to EN 12201．The pipes are marked with the Nordic Poly Mark and DS approved

Ecochain

LCA standard：

Standard database：
Externally verified： Issue date： End of validity：
Verifier：

EN15804＋A2（2019）

Worldwide－Ecoinvent v 3．6 Cut－Off
Yes

20－06－2022

20－06－2027
Harry van Ewijk－SGS Search

This LCA was evaluated according to EN15804＋A2．It was concluded that the LCA complies with this standard

A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
■	『	■	MND	■	『	『	『									
Product stage					Use stage							End－of－Life stage				
A1 Raw material supply A2 Transport A3 Manufacturing Construction process stage					B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use							C1 De－construction demolition C2 Transport C3 Waste processing C4 Disposal				

A5 Assembly／Construction installation process
D Reuse－Recovery－Recycling－potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin－SE－Eskilstuna．These materials may be printed or（photo）copied or otherwise used only with the written consent of Wavin－SE－Eskilstuna．

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	1.01E+2	1.11E+1	$4.03 \mathrm{E}+0$	$1.16 \mathrm{E}+2$	$1.53 \mathrm{E}+0$	7.08E+1	$8.46 \mathrm{E}-1$	-7.73E+1	$1.12 \mathrm{E}+2$
GWP-f		kg CO 2 eq	1.21E+2	$1.10 \mathrm{E}+1$	$2.92 \mathrm{E}+0$	1.35E+2	$1.53 \mathrm{E}+0$	$5.04 \mathrm{E}+1$	$8.46 \mathrm{E}-1$	-7.70E+1	1.11E+2
GWP-b		kg CO2 eq	-1.99E+1	$5.02 \mathrm{E}-3$	7.69E-1	-1.91E+1	$9.27 \mathrm{E}-4$	$2.04 \mathrm{E}+1$	$6.35 \mathrm{E}-4$	-2.90E-1	$9.75 \mathrm{E}-1$
GWP-Iuluc		$\mathrm{kg} \mathrm{CO2}$ eq	$4.79 \mathrm{E}-2$	$4.08 \mathrm{E}-3$	3.40E-1	3.92E-1	5.40E-4	8.63E-3	1.21E-5	-2.03E-2	3.81E-1
ODP		kg CFC11 eq	$6.86 \mathrm{E}-6$	$2.43 \mathrm{E}-6$	$3.31 \mathrm{E}-7$	$9.63 \mathrm{E}-6$	3.52E-7	1.14E-6	1.80E-8	-3.77E-6	7.37E-6
AP		mol $\mathrm{H}+\mathrm{eq}$	$4.67 \mathrm{E}-1$	$6.73 \mathrm{E}-2$	$2.48 \mathrm{E}-2$	5.59E-1	8.70E-3	4.90E-2	4.31E-4	-2.21E-1	$3.96 \mathrm{E}-1$
EP-fw		kg Peq	2.12E-3	1.11E-4	5.40E-5	$2.29 \mathrm{E}-3$	1.26E-5	$2.50 \mathrm{E}-4$	5.59E-7	-9.83E-4	$1.57 \mathrm{E}-3$
EP-m		kg Neq	8.07E-2	2.33E-2	7.34E-3	1.11E-1	3.11E-3	1.46E-2	$3.05 \mathrm{E}-4$	-4.14E-2	$8.78 \mathrm{E}-2$
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	$9.18 \mathrm{E}-1$	$2.57 \mathrm{E}-1$	$8.05 \mathrm{E}-2$	$1.26 \mathrm{E}+0$	3.43E-2	1.60E-1	$1.75 \mathrm{E}-3$	-4.74E-1	$9.78 \mathrm{E}-1$
POCP		kg NMVOC eq	$4.14 \mathrm{E}-1$	7.31E-2	2.24E-2	$5.10 \mathrm{E}-1$	$9.80 \mathrm{E}-3$	5.02E-2	$6.85 \mathrm{E}-4$	-2.09E-1	$3.62 \mathrm{E}-1$
ADP-mm		kg Sb eq	$1.52 \mathrm{E}-3$	$2.78 \mathrm{E}-4$	8.80E-5	$1.88 \mathrm{E}-3$	3.95E-5	1.88E-4	$4.32 \mathrm{E}-7$	-4.99E-4	$1.61 \mathrm{E}-3$
ADP-f		MJ	4.20E+3	1.66E+2	$2.91 \mathrm{E}+1$	$4.39 \mathrm{E}+3$	$2.34 \mathrm{E}+1$	$1.51 \mathrm{E}+2$	$1.32 \mathrm{E}+0$	$-2.30 \mathrm{E}+3$	$2.27 \mathrm{E}+3$
WDP		m3 depriv.	$9.12 \mathrm{E}+1$	5.91E-1	$1.87 \mathrm{E}+1$	$1.10 \mathrm{E}+2$	$7.19 \mathrm{E}-2$	$2.95 \mathrm{E}+0$	$6.04 \mathrm{E}-3$	-4.46E+1	$6.89 \mathrm{E}+1$
PM		disease inc.	5.29E-6	$9.84 \mathrm{E}-7$	$4.18 \mathrm{E}-7$	6.69E-6	$1.38 \mathrm{E}-7$	7.93E-7	$9.05 \mathrm{E}-9$	-1.83E-6	$5.79 \mathrm{E}-6$
IR		kBq U-235 eq	$3.81 \mathrm{E}+0$	6.97E-1	$8.64 \mathrm{E}-2$	4.60E+0	$1.02 \mathrm{E}-1$	$4.56 \mathrm{E}-1$	6.14E-3	-1.41E+0	$3.76 \mathrm{E}+0$
ETP-fw		CTUe	$8.73 \mathrm{E}+2$	1.48E+2	$8.10 \mathrm{E}+1$	$1.10 \mathrm{E}+3$	$1.90 \mathrm{E}+1$	$1.72 \mathrm{E}+2$	$1.16 \mathrm{E}+0$	-4.17E+2	$8.77 \mathrm{E}+2$
HTP-c		CTUn	$4.08 \mathrm{E}-8$	4.83E-9	3.20E-9	4.89E-8	6.77E-10	$2.15 \mathrm{E}-8$	3.20E-11	-1.71E-8	$5.40 \mathrm{E}-8$
HTP-nc		CTUn	8.39E-7	1.61E-7	$8.72 \mathrm{E}-8$	$1.09 \mathrm{E}-6$	$2.27 \mathrm{E}-8$	$2.60 \mathrm{E}-7$	$7.38 \mathrm{E}-10$	-3.90E-7	9.80E-7
SQP		Pt	$2.04 \mathrm{E}+3$	1.43E+2	$3.82 \mathrm{E}+0$	$2.19 \mathrm{E}+3$	$2.01 \mathrm{E}+1$	$1.20 \mathrm{E}+2$	$3.38 \mathrm{E}+0$	$-4.69 \mathrm{E}+2$	$1.86 \mathrm{E}+3$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$3.46 \mathrm{E}+2$	$2.07 \mathrm{E}+0$	1.83E+2	5.32E+2	$3.36 \mathrm{E}-1$	7.40E+0	$5.21 \mathrm{E}-2$	-1.13E+2	4.27E+2
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$3.46 \mathrm{E}+2$	2.07E+0	$1.83 \mathrm{E}+2$	5.32E+2	3.36E-1	7.40E+0	5.21E-2	-1.13E+2	4.27E+2
PENRE		MJ	$4.50 \mathrm{E}+3$	$1.77 \mathrm{E}+2$	3.09E+1	$4.71 \mathrm{E}+3$	$2.49 \mathrm{E}+1$	1.61E+2	$1.40 \mathrm{E}+0$	$-2.48 \mathrm{E}+3$	$2.42 \mathrm{E}+3$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$4.50 \mathrm{E}+3$	1.77E+2	3.09E+1	$4.71 \mathrm{E}+3$	2.49E+1	1.61E+2	$1.40 \mathrm{E}+0$	$-2.48 \mathrm{E}+3$	$2.42 \mathrm{E}+3$
PET		MJ	$4.85 \mathrm{E}+3$	$1.79 \mathrm{E}+2$	$2.14 \mathrm{E}+2$	$5.24 \mathrm{E}+3$	$2.52 \mathrm{E}+1$	$1.68 \mathrm{E}+2$	$1.45 \mathrm{E}+0$	$-2.59 \mathrm{E}+3$	$2.84 \mathrm{E}+3$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.41E+0	2.01E-2	$4.45 \mathrm{E}-1$	1.88E+0	$2.65 \mathrm{E}-3$	8.87E-2	$1.63 \mathrm{E}-3$	-6.84E-1	$1.29 \mathrm{E}+0$

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	7.72E-4	4.19E-4	4.42E-5	1.24E-3	5.99E-5	$2.47 \mathrm{E}-4$	$1.58 \mathrm{E}-6$	-6.93E-4	8.51E-4
NHWD		kg	$5.41 \mathrm{E}+0$	$1.05 \mathrm{E}+1$	$1.36 \mathrm{E}-1$	$1.60 \mathrm{E}+1$	1.45E+0	$7.74 \mathrm{E}+0$	5.81E+0	-2.04E+0	$2.90 \mathrm{E}+1$
RWD		kg	4.16E-3	1.09E-3	1.23E-4	$5.38 \mathrm{E}-3$	$1.59 \mathrm{E}-4$	5.80E-4	8.62E-6	-1.31E-3	4.81E-3
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

